
Dynamic Taint Analysis in JavaScript for

JavaScript

Submitted in partial fulfillment of the requirements for

the degree of

Master of Science

in

Information Security

Wai Tuck Wong

B.S., Information Systems, Singapore Management University

Carnegie Mellon University
Pittsburgh, PA

May, 2020

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

27995190

27995190

2020

© Wai Tuck Wong, 2020
All Rights Reserved

Acknowledgements

I would like to thank Professor Limin Jia for supervising and guiding me through

this field of research - I have learnt countless things and was exposed to new ways

of thinking which will prove to be invaluable in the future. I am grateful for having

Professor Lujo Bauer as a reader of my thesis, providing insights and pointing out a

corner case in my implementation of the static analysis. This work is done together

with the team led by Darion Cassel, together with Spencer Yu. I am really grateful

for the all feedback from the folks in Professor Limin Jia’s group at Cylab for my

defense. Finally, I would like to thank everyone at the Information Networking

Institute for being supportive throughout my journey at Carnegie Mellon University.

It was a tremendously fruitful experience - one that I would remember in the days

ahead. The work in this thesis is self-funded.

ii

Abstract

In recent years, we have seen a rise in the number of applications built on

JavaScript, bolstered by the increase in popularity of application frameworks such as

NODE.JS. In particular, NODE.JS provides convenience for developers through pack-

ages which they can import functionality from. This has attracted malicious actors

to turn their focus to find ways of exploiting such packages. In fact, code injection

attacks are prevalent in the ecosystem - they allow for arbitrary code or commands

to be run - and are the most critical vulnerabilities in the language. Unfortunately,

JavaScript is a complicated language, and significant research effort has been invested

in developing dynamic taint analysis tools to identify such vulnerabilities at scale.

Prior work attempted to build such tooling on top of JavaScript engines, but such

attempts are highly unmaintainable due to the rate of change in both the language

and the engines they run on. Other platform independent approaches lack the flexi-

bility in keeping track of taint for individual characters in strings. In this thesis, we

propose a flexible framework for doing dynamic taint analysis purely in JavaScript

that is capable of byte level tainting.

We present NodeTaintProxy, a dynamic taint analysis engine built via augment-

ing the instrumentation engine, Jalangi2. Here, we developed a novel approach in

dealing with primitives by specifying the behavior for wrapping, and we show that

this behavior respects the semantics outlined in ECMA-262. We also show how

taint propagation in dynamic code generation can be handled through a mix of code

rewriting and static analysis on the dynamically generated code. Finally, we evaluate

our tool on existing vulnerabilities in NODE.JS packages and show that our tool is

successful in finding these vulnerabilities.

iii

Table of Contents

Acknowledgements ii

Abstract iii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 NODE.JS and the NPM Ecosystem 2

1.1.1 Security Concerns in NPM . 3

1.2 Existing Approaches to Finding Code Injection Vulnerabilities 6

1.2.1 Static Analysis . 6

1.2.2 Dynamic Analysis . 7

1.2.3 Dynamic Taint Analysis . 7

1.2.4 Challenges for JavaScript . 8

1.3 Outline . 9

2 Overview and Background 11

2.1 Overview . 11

2.1.1 Primitives . 13

2.1.2 Objects . 14

2.1.3 Dynamic Code Generation . 15

2.2 Instrumentation and Reflection . 15

2.2.1 Reflection in JavaScript via Proxy 16

2.2.2 Instrumentation of JavaScript Operations 17

iv

2.3 NODE.JS Features and Vulnerabilities 17

2.3.1 Code Injection Vulnerabilities 18

2.4 Dynamic Taint Analysis . 19

2.4.1 Definitions . 20

2.4.2 Taint Propagation . 21

2.4.3 Explicit and Implicit Flow . 23

3 Related Work 25

3.1 Dynamic Taint Analysis in JavaScript 25

3.1.1 Taint Analysis on the JavaScript Engine 26

3.1.2 Engine Independent Dynamic Taint Analysis for JavaScript . . 28

3.1.3 Handling of Dynamically Generated Code 33

3.2 Analysis of NPM Packages . 35

3.2.1 Ecosystem Analysis of NPM Packages 35

3.2.2 Security Analysis of NPM Packages 36

4 NodeTaintProxy 38

4.1 Architecture . 38

4.1.1 Overview . 39

4.1.2 Uniquely Identifying Primitives via Wrapping 39

4.1.3 Initializing the Analysis . 40

4.1.4 Operation Semantics of Our Tool 40

4.1.5 Taint Tracking and Propagation 42

4.1.6 Architecture by Layers . 44

4.2 User Interface - Interaction via Ghost Functions 47

4.2.1 Setting up Sinks . 48

4.2.2 Setting up Sources . 48

4.2.3 Running the Analysis . 48

4.3 Handling Tainted Dynamic Code Generation 50

4.3.1 Challenges . 50

4.3.2 Overview of Approach . 51

4.3.3 Limitations of Approach . 58

v

4.4 Discussion . 58

4.4.1 JavaScript Semantics . 59

4.4.2 Native Functions . 59

4.4.3 Precise String Tainting . 60

5 Results and Discussion 61

5.1 Dataset . 61

5.2 Results on Case Studies . 62

5.3 Discussion . 63

5.3.1 Successful Detection . 63

5.3.2 Unsupported Operations . 64

5.3.3 Overwrapping . 64

5.4 Feasibility Study . 65

5.4.1 Challenges for Large Scale Analysis of Packages 65

5.4.2 Methodology of Feasibility Study 67

5.4.3 Analysis of Feasibility Study Vulnerabilities 68

5.4.4 Insights from Feasibility Study 68

5.5 Threats to Validity . 69

6 Limitations and Future Work 73

6.1 Overwrapping of Primitives . 73

6.2 Better Language Support . 74

6.3 Large Scale Analysis . 76

7 Conclusion 77

Bibliography 80

Appendix A Sample Test Program 89

vi

List of Tables

Table 1.1 ECMAScript Standards and Revision Dates 2

Table 5.1 NodeTaintProxy Evaluation Results 71

Table 5.2 Code Injection Vulnerabilities Found in Feasibility Study 72

vii

List of Figures

Figure 2.1 Overview of Internals of NodeTaintProxy 12

Figure 4.1 Segregated Architecture of NodeTaintProxy 47

Figure 4.2 Output of Running the Analysis for the module ps 49

viii

Symbols

MW The Wrapper map that stores mappings of object references to
their unique IDs

ME The shared context map that maps variables to be tainted to
their unwrapped values

MT The Taint map that stores mappings of IDs to their taint entries

ID A unique identifier assigned to a particular object reference

Abbreviations

JS JavaScript

ES5.1 ECMAScript 5.1

ES6 ECMAScript 2015/ECMAScript 6

API Application Programming Interface

ACI Arbitrary Command Injection

ACE Arbitrary Code Execution

AST Abstract Syntax Tree

NPM Node Package Manager

XSS Cross-site Scripting

LHS Left-hand side

ix

1

Introduction

JavaScript, for the seventh year in a row, is the most popular language - according to

a survey done by StackOverflow on nearly 90,000 developers. In fact, JavaScript is the

most commonly used programming language among both amateur and professional

developers [21]. JavaScript thrives because of its versatility - first introduced in

September 1995 [26], it provided interactivity to users on the web in an era where

static web pages were previously the norm. It has since been standardized under the

ECMAScript standard [43]. The language evolves quickly, with revisions every year

and a living standard. Table 1 describes the list of ECMAScript standards published

over the years and the years they were published [42].

To no one’s surprise, JavaScript became the de facto standard for programming on

the web, and with the introduction of frameworks such as NODE.JS and Electron, they

soon became accessible to server-side developers and desktop application developers.

In fact, NODE.JS is most commonly used framework among developers, according to

the same StackOverflow survey [21]. With such prolific use, our thesis will focus on

NODE.JS - we want to find vulnerabilities in this platform before the attackers do.

To do that, we need to understand the ecosystem and see how our approach fits in

1

ECMAScript Version Date Standardized
ECMAScript 1 1997
ECMAScript 2 1998
ECMAScript 3 1999
ECMAScript 5 2009

ECMAScript 5.1 2011
ECMAScript 2015 2015
ECMAScript 2016 2016
ECMAScript 2017 2017
ECMAScript 2018 2018
ECMAScript 2019 2019
ECMAScript.Next Living Standard

Table 1.1: ECMAScript Standards and Revision Dates

this space, and we will elaborate more on this point in the section below.

1.1 NODE.JS and the NPM Ecosystem

NODE.JS was first introduced as a way of running JavaScript on the backend and

it soon became popular among developers as a framework to use for developing

server-side applications. With a budding community support, NPM (Node Package

Manager) was introduced as a way of allowing developers to leverage on modules

created by others in their own projects by pulling from a common NPM Registry.

As of February 2019, it houses over 800,000 packages in the registry [83].

However, such a registry is not without issues. In a typical NODE.JS application,

developers simply import third party modules from NPM, without verifying the func-

tionality of these modules. In the developer’s mind, they have a mental model of how

the underlying package ought to behave. For example, they infer that the underlying

package is well-implemented and tested from the large number of downloads. These

assumptions are frequently untested and may be violated by the underlying package

[33].

Developers who rely on packages from the registry implicitly trust the packages

2

they use and all of the packages’ dependencies. This has several issues. There is no

guarantee of code quality of the underlying packages. It might even be the case that

the contributor themselves cannot be trusted [83]. Cases of typosquatting occurred

many times throughout the history of NPM, where misspelled package names led to

malicious packages being installed on the unsuspecting developer’s system [39]. While

a powerful resource for developers, they may not understand the full repercussions

of using a package from the repository, and may end up introducing vulnerabilities

to their applications without them even realizing it.

1.1.1 Security Concerns in NPM

Here, we consider from the perspective of a developer the potential security problems

that they might face, if they were to leverage on the library of existing packages in

the NPM registry.

1. Unvetted Publishing Model. We first note that publishing to the NPM

repository is completely unvetted. All it takes to publish is a simple command

npm publish [3], and the package is available to the whole world. The publish-

ers are responsible for the maintenance of the package. Code quality between

packages in the ecosystem therefore varies widely when there’s completely no

review process. Even if a vulnerability was found in a package, the package

remains on the NPM registry for download, and only a warning is displayed

if it was downloaded. This decision was made to maximize availability, to al-

low packages that depend on the vulnerable package to continue to work. For

example, the node-serialize module [9] continues to see over 1000 weekly

downloads even after a critical vulnerability was discovered, and still sees use

despite there being no patches available for it [13].

2. Untrusted Authors. Since the public NPM repository is unvetted, anyone,

3

including malicious actors, can simply upload a package containing a backdoor

that runs malicious commands on the victim’s machine. An unknowing devel-

oper may download such a package and find his application or even machine

to be compromised. This is a real danger that developers worry about - in a

survey done by NPM of 16000 NODE.JS developers, 77% of respondents were

concerned about the security of open source code [28]. Their fears were not

unfounded. In 2018, a popular NODE.JS module, Event-Stream, had their code

backdoored with malicious code that stole private keys from the Bitcoin wallet

CoPay [38]. It was undiscovered for over a month, affecting 3931 packages that

depended on it [45]. We see that the highly interdependent nature of the NPM

repository is fragile - a vulnerability or malicious code in a single package can

have ripple effects and induce vulnerabilities in all packages that depend on it.

3. Full Privilege of Package Code. To exacerbate the problem, the pack-

ages not only have the same privileges as the user at the point of installation

(through the install scripts), the packages themselves run without explicit au-

thorization on what resources they are allowed to access [71]. For example, a

package that provides a wrapper to delete files may do it via running the shell

command "rm -f <file>", thus leading to a command injection vulnerability

through the file argument, and the unsuspecting developer using the package

will not be aware of this underlying vulnerability unless they go in to audit the

source code manually.

Without the proper procedures or tooling, vulnerabilities will creep into ecosys-

tem and packages containing vulnerable code will be exploitable. In particular,

JavaScript is prone to code injection attacks on many fronts - on the browser, it

manifests as a cross-site scripting (XSS) attack, while on server-side applications,

they could be arbitrary code execution or command injection attacks (or broadly

4

speaking, code injection attacks). In fact, these attacks are so prevalent that the

OWASP Foundation lists these vulnerabilities as the top 10 web application security

risks [17].

Client-side vulnerabilities have been well studied [67][62][54] and will not be a

focus in our evaluation. We will focus on code injection attacks for server-side ap-

plications in the rest of the thesis, in particular for code injection vulnerabilities for

packages in NODE.JS. We will present more details on code injection vulnerabilities

for NODE.JS packages in Chapter 2.

On NODE.JS, we see a ripe set of tools that an attacker can leverage to interact

with the system. Below, we show how these vulnerabilities can manifest in a package

used by the developer.

1. Input provided to shell commands. In implementing certain function-

ality, some package developers may choose to implement an external script

or leverage on an existing system binary. In their code, they would pass the

arguments directly to the executable file using unsafe APIs such as exec or

execSync. This can lead to command injection attacks.

2. Evaluation of input. Package developers are known to use eval as a tool to

evaluate user input in a power user fashion to get “cleaner” code, despite the

known dangers of doing so [82]. An example of this is the mongui package [76],

which uses eval so that users of the package have a “more natural programming

interface”. Such unrestricted evaluation of user input can lead to arbitrary code

execution.

In fact, for packages that exhibit the above behavior, very few, if any of them,

use any form of sanitization, and they rarely document that untrusted input should

not be passed into the interface of the package. Here, sanitization refers to removing

5

or encoding some parts of the input such that it neutralizes malicious behavior that

can result from the input [5]. In a study of injection attacks, growl, a highly popular

package that passed input directly to exec, was discovered to have as many as 15

packages that depended on it that did not do any checks or sanitization [71]. The 4

packages that attempted to do sanitization were found to be bypassable. As we see

here, these are real problems in the NPM ecosystem. In the next section, we detail

potential ways of finding such vulnerabilities so we can solve the problem at hand.

1.2 Existing Approaches to Finding Code Injection Vulnerabilities

What we want to achieve is a way for developers to audit their dependencies for code

injection vulnerabilities. More broadly, such a tool would also allow security analysts

to probe at different packages and their interfaces and see if an input provided to

the package interface would lead to code injection, such as calling eval on the input

or the exec function of the child_process module on the input.

1.2.1 Static Analysis

One such way of determining whether an input would lead to undesired behavior is

to statically analyze the source code of the application. For example, one can scan

the underlying source code to see if there are any uses of eval, and then manually

evaluate whether that usage is safe [71]. More advanced methods of static analysis

(via static taint analysis) considers whether the user input could possibly flow to

the function call. Given the source code of the application, a data flow graph is

constructed, where an edge exists from one variable to another if and only if there is

an assignment from the source variable to the target variable [36]. An advantage is

that no concrete input needs to be provided to the package being analyzed. However,

such an approach is would be highly inaccurate. Without runtime information, it

would be very difficult to determine whether a branch would be taken, for example.

6

Static analysis requires us to reason about all execution paths, which inevitably leads

to a state explosion, and potentially many false positives. Furthermore, we will not

be able to determine actual runtime behavior where some parts of the code will

not run, for example when an exception is thrown in the code or when dynamically

generated code is supposed to run, which leads to us missing more cases than what

we would like.

1.2.2 Dynamic Analysis

This naturally moves us to trying a different technique. A different approach uses dy-

namic analysis, where we have access to runtime information by providing a concrete

input to the package’s interface. We then check at the end whether some undesired

function is triggered (e.g. eval) [44]. While this has the advantage of reducing false

positives over the above approach, we cannot ascertain whether the input has any

influence over the parameters provided to the undesired function. More concretely,

we wish to figure out if the attacker/adversary has control over the arguments to the

undesired function from the adversary’s input alone. This however is not possible

purely with Dynamic Analysis. In particular, just providing random inputs to the

package’s interface do not give us a principled way of analyzing the influence of the

input on the end result [59].

1.2.3 Dynamic Taint Analysis

This moves us to the technique that we propose to use - dynamic taint analysis. In

this case, we mark the input to the package as tainted, and we propagate the taint

on the input to other variables if the variable was affected by the input [60]. At

the end, we check to see if the undesired function was called with an argument that

could potentially be controlled by the adversary (i.e. the argument was tainted).

This gives us better results in terms of reducing false positives (since we know the

7

argument is indeed attacker controlled), but in exchange we need a more complicated

infrastructure to keep track of taint and propagate taint as the JavaScript code runs.

We will discuss more details on the background of this approach, related work, and

how we implement this approach in the later chapters.

1.2.4 Challenges for JavaScript

In building a platform agnostic dynamic taint analysis framework for JavaScript, we

will face challenges from the language itself. Below, we summarize the key challenges

in dealing with the language.

1. Complexity of Semantics. JavaScript is a complicated language which pre-

vents introspection into its internals. For example, we won’t be able to view

the heap address of a JavaScript object, or view certain properties which are

internal to the JavaScript object. Some properties are read-only and prevent

modification from within JavaScript itself. Furthermore, JavaScript has rather

complicated semantics, for instance the equality operator == is neither reflex-

ive nor transitive [52]. In dealing with JavaScript, we must be careful not to

make any assumptions which do not adhere to the underlying semantics of

JavaScript, lest we end up with a buggy implementation of our tool.

2. Native Functions. Much like how C syscalls are a problem [68], native func-

tions are the equivalent construction in JavaScript, where only the input and

result of the computation are visible from JavaScript itself. This lack of trans-

parency forces us to adopt workarounds to ensure our tool still works as ex-

pected, as we will see later.

3. Dynamically Generated Code. Finally, JavaScript allows for additional

code to be generated and evaluated at runtime through the eval function and

Function constructor. Usage of this feature is more common in reality than

8

once believed [65], so we will have to ensure that our tool works even in the

case where code is dynamically generated. In cases where eval is not the sink,

we want to make sure that taint is propagated correctly as well, even when the

argument to eval is tainted.

We will outline the background required to tackle these problems in Chapter 2

and detail how we deal with the above problems in detail in Chapter 4.

JavaScript is a challenging language to analyze, but it has a large impact in the

real world, where an entire ecosystem of packages could be analyzed with the right

tooling. As of now, the developer has to implicitly trust the modules he utilizes

without a way of determining whether the package does what he expects. We want

to provide tooling to allow analysts to find code injection vulnerabilities faster, and

even allow developers to find such vulnerabilities in their own code base.

We are motivated to create a state of the art dynamic taint analysis framework

that allows us to analyze JavaScript code for code injection vulnerabilities; we make it

platform agnostic by implementing it on top of existing instrumentation frameworks

that employ source-to-source rewriting. Through this, we can do taint tracking and

propagation, and we further augment it with the ability to propagate taint even when

the argument to eval is tainted, using a novel way of tainting via program rewriting

and static analysis. We show that our approach works on the vulnerabilities described

earlier through a series of case studies that display code injection vulnerabilities. Our

current implementation focuses on NODE.JS, but the implementation design should

minimize effort required to port to a different JavaScript platform.

1.3 Outline

The thesis is broken down into the following parts. First, in Chapter 1, we outline

the motivation in carrying out the development of a dynamic taint analysis tool for

9

JavaScript, specifically to analyze NPM packages. Next, we outline the necessary

background needed to understand our approach in Chapter 2. In Chapter 3, we

look at prior work that has been done in developing dynamic taint analysis for

JavaScript in different areas, as well as look at other large scale studies done in

the NPM ecosystem, and we compare our approach to theirs. In Chapter 4, we

explain our tool, NodeTaintProxy, and we describe how we approach maintaining and

propagating taint in JavaScript, while at the same time maximizing our adherence

to the underlying semantics. We also show our novel method that propagates taint

in dynamically generated code through program rewriting and static analysis. In

Chapter 5, we show that our tool is able to detect code injection vulnerabilities

that were made public recently, as well as case studies that were selected from prior

work. We also show that our approach is promising in finding new vulnerabilities in

a feasibility study in that chapter. We then round up our discussion with limitations

and future work for the framework in Chapter 6. Finally, we conclude by summarizing

our key findings in Chapter 7.

10

2

Overview and Background

In this chapter, we first briefly outline the construction that our approach will take.

We will then delve deep into the background required to understand each component

of our approach in the subsequent sections of this chapter.

2.1 Overview

In Figure 2.1, we provide an overview of the internals of our approach. On the left

side of the diagram in Figure 2.1, we outline the source code of a simple JavaScript

program running on our framework, which is a NODE.JS package under inspection.

On the right, we show the data structures that are involved in the framework. The

wrapper map keeps track of a mapping of object references to unique identities of

all the values we have seen thus far, and the taint map keeps track of a mapping of

the unique identities to their taint information. We will elaborate more concretely

about the data structures in Chapter 4.

The code referenced simply declares two variables y and s in lines 1 and 2, taints

the variable s in line 4, declares a new variable x that is set to the value y+s in

line 6 (which is the string ‘1+1’) evaluates the string dynamically in line 8. The

11

data structures depicted shows the internal state of our framework after line 6 has

executed. For example, x has ID(2) since the ID associated with the string ‘1+1’

is ID(2) in our wrapper map. Furthermore, we note that the indices of x that are

tainted are the characters ‘+1’ at the end of the string. We can tell that from the

taint map, which tells as that indices 1 and 2 of the string are tainted for the value

associated with ID(2). This makes sense, since the tainted values were derived from

a tainted variable s which has the value ‘+1’. We see that s was tainted since the

value of s maps to ID(1) in the wrapper map, and in the taint map, ID(1) maps to

a taint entry that tells us that the whole string was tainted (as we can see from the

true in the first entry of the tuple). We note some interesting problems that this

piece of code raises in our analysis.

var y = 1;

var s = "+1"

__jalangi_set_taint__(s);

var x = y + s;

var k = eval(x);

Key Value

Wrapped(1) ID(0)

Wrapped("+1") ID(1)

Wrapped("1+1") ID(2)

Wrapper Map

Taint Map

Key Value

ID(1) {true, {0:true,

1:true, length:

true}}

ID(2) {false, {0:false,

1:true, 2:true,

length: true}}

Figure 2.1: Overview of Internals of NodeTaintProxy

On line 1, we declared a variable y with value 1. The identity of this value 1

should differ from another variable which is also have a value of 1. We see that

in this case, we have wrapped the value and mapped it to a unique ID, ID(0), in

our wrapper map. More generally, we need to wrap primitives which do not have

12

references in JavaScript so we can uniquely identify them. We do so with a object

class called Proxy. We elaborate more on what primitives are in JavaScript, and

what a Proxy is, and how it is useful for our analysis in Sections 2.1.1 and 2.2.1

respectively.

On line 4, we tainted the variable s, and we used it to compute the value of the

variable x in line 6. This means that taint needs to propagate from the variable s

to the variable x, and the taint map has to be updated (as indicated by the orange

arrow), so that we can keep track of taint of every value in the system. We do

so by hooking each operation in JavaScript using instrumentation, which allows us

to define custom behavior before and after each operation. We will explain what

instrumentation is and how it is achieved in Section 2.2.2 in this chapter.

Finally, on line 8, a variable k was declared by dynamically evaluating the string

"1+1" stored in the variable x. Since x tainted, the new variable k should also

be tainted. More generally, variables introduced in the dynamically generated code

should also be tainted. We look at how dynamic code generation is achieved in

JavaScript and note specific details we have to take care of in our framework in

Section 2.1.3.

The simple example above highlights the need to understand the underlying lan-

guage and all its nuances in order to perform dynamic taint analysis correctly. Fur-

thermore, JavaScript provides some useful classes which we will leverage on to build

our framework. In this section, we will describe important aspects of JavaScript that

we have to be aware of when we develop our tooling. All of the description below

are based on the latest edition of the ECMAScript standard, available here [43].

2.1.1 Primitives

The simplest types in JavaScript are the built-in primitive types, which are Un-

defined, Null, Boolean, Number, String and Symbol. These primitive types

13

behave as you would expect, much like normal primitives in standard imperative

programming languages. They are treated as values in the context of JavaScript,

which means when comparing them, we do not compare their pointers, but simply

compare their values. The standard unary and bianry operators apply to JavaScript,

although some of these operators are overloaded to coerce one type to another (for

instance the unary operator + is used to coerce any type to a Number).

Primitives are not objects, and therefore do not have methods. Most operations

in JavaScript are however defined on Objects, and through type coercion, primitives

will be promoted to Objects before methods are called on them. For example, the

primitive 1 is casted to the object Number(1) before calling a method like toString

on it. Fundamentally, JavaScript is an object-based language, and we will detail

what objects are in JavaScript below.

2.1.2 Objects

A JavaScript object is simply a collection of zero or more properties (key-value pairs),

where the corresponding keys and values may be of any type. Each property may

have attributes to control how it may be manipulated (for example, the Writable

attribute for a property controls whether JavaScript can change the property).

Many built-in object types exist, some of them fundamental to the semantics of

the language (such as Object), others serve as object representations of the under-

lying primitives (such as Number). A function is simply a special instance of a

built-in object which is callable.

For many of these built-in objects, they have methods that are inherited by the

child instance of the object. Such functions are often native functions, i.e. they

are evaluated in the C++ JavaScript runtime in order to get optimal performance.

For example, an operation to find the the index of an element in an array through

the indexOf method of the Array prototype is handled in the C++ runtime (even

14

though it can be implemented in JavaScript as well), and the result is returned as a

value accessible in JavaScript. This implies that any operation done by the runtime

will not be visible to any code running on JavaScript, a fact that we will have to deal

with in the implementation.

Now that we have an overview of the language, we will next look at dynamic code

generation, a powerful language feature of JavaScript which we will have to handle

in our framework.

2.1.3 Dynamic Code Generation

In JavaScript, code can be generated and evaluated during runtime using the eval

function and the Function constructor. The dynamically generated code is not

isolated and executes in the current context. Hence, it is able to access and modify

the current scope and global scope. This means that a variable created or modified

in the dynamically generated code will be accessible to the static code executing in

the same scope later. What this means for us is that taint propagation and tracking

must still run even in the presence of dynamically generated code. Another feature

of eval is that the value of the last evaluated statement becomes the return value

of the eval function, so that must be respected as well in our framework.

With knowledge of how to handle unique cases in JavaScript, we move on to the

next part of our framework - to propagate taint via reflection and instrumentation.

2.2 Instrumentation and Reflection

As mentioned in our overview, being able to intercept operations and customize

behavior is key to taint tracking and taint propagation. Since the state of the system

changes every time an operation occurs in JavaScript, this allows us to update our

current knowledge of what variables are tainted in the system. In this section, we

detail reflection done via the Proxy object class in JavaScript, as well as describe

15

how instrumentation in JavaScript is done.

2.2.1 Reflection in JavaScript via Proxy

The Proxy class is a special kind of object class that allows us to perform reflection in

the language, such as intercepting property accesses and changing the values returned

of a particular object instance. By wrapping values with a Proxy, we can then define

custom behavior for accesses to the properties of the value that we wrapped (the

proxied value).

However, using a Proxy is also not without any downsides; in particular, we still

need to ensure transparency of the proxy. When we say a Proxy is transparent, we

mean that operations on the Proxy should be semantically equivalent to the proxied

value. While this is largely true, it does not hold for certain operators. For example,

the equality operator == is an issue in this case. The expression 1 == 1 will give

unexpected results when the primitives are wrapped, and in general we want to make

sure JavaScript works as expected in our framework if we wrap the primitives.

To elaborate on the point above, wrapped primitives exist as different Proxy

objects which are unique JavaScript objects at runtime, so their references will not

be equal [52]. To maintain semantic equivalence, we want to maintain transparency

when we use proxies in our framework for interception on the underlying primitives

or objects. Without modification to the semantics on the Proxy, the expression in

our example will evaluate to false.

Proxies alone are not enough to intercept all operations in JavaScript. For in-

stance, anything not involving objects like a binary operations (for instance, the +

operator) on primitives will not be intercepted. To intercept those operations, we

use a far more powerful framework that allows us to intercept all operations.

16

2.2.2 Instrumentation of JavaScript Operations

Propagating taint for each operation requires us to perform operations before and

after each operation, and to do so, we need hooks into every operation in JavaScript

- this is generally known as instrumentation. This can mainly be achieved in two

ways. The first way looks at modifying the underlying JavaScript interpreter so that

every interpreted bytecode is instrumented (i.e. there is a hook that is called before

and after every instruction). This was achieved in LeakTracker’s modification to

Firefox’s JavaScript interpreter [77]. Another way to achieve this is via program

rewriting, much like in the Jalangi2 framework [69]. The framework rewrites code to

install hooks for analysis, and supports JavaScript code written in ES5.1 and lower.

The code to be instrumented are rewritten recursively so that both the script and

its dependencies are instrumented. The rewritten program contains hooks which

are triggered before and after each operation, allowing the analyst to define and

customize every operation in JavaScript (for example, invokeFunPre is triggered

before every function call, instrumentCode are triggered after eval is called). In

our approach, we will be using Jalangi2. An unfortunate consequence is that Jalangi2

currently only supports up to ES5.1, so JavaScript code that uses newer features will

have to be transpiled down ES5.1 to operate within our framework.

With the above background knowledge on JavaScript, we look next at the specific

JavaScript context to which we wish to apply our method. We will focus our attention

on code injection vulnerabilities, which are the vulnerability classes we are interested

in detecting for NODE.JS.

2.3 NODE.JS Features and Vulnerabilities

As mentioned in Chapter 1, we will be evaluating our framework on NODE.JS. The

APIs of the framework provide useful functions that allow a developer to interact

17

with the underlying operating system. These APIs include functions that run shell

commands, interact with the file system and send packets over the network. These

functions defined in NODE.JS are leveraged by developers to create powerful applica-

tions. For example, web servers and even full-fledged command line utilities can be

written with such APIs. The APIs can also be combined to create packages (such as

express) that provide export functionality, which can then published on the NPM

repository so that they can be used by everyone else. Unfortunately, as mentioned

previously, code injection vulnerabilities are sometimes present in these packages, as

we will see below.

2.3.1 Code Injection Vulnerabilities

Code injection is defined in the Common Weakness Enumeration (CWE) as a soft-

ware vulnerability that allows users to provide input that modifies control flow of

the underlying program [4]. This is especially relevant in NODE.JS - a large num-

ber of advisories published at vulnerability databases such as Snyk for the NODE.JS

framework [70] falls under this category. Note that code injection vulnerabilities are

not the only vulnerabilities that are present in this ecosystem; there are other vul-

nerabilities classes present in NPM packages, such as Denial of Service via regular

expressions, but we will not discuss these vulnerabilities. Instead, we focus on code

injection vulnerabilities, since they are the most critical and can do the most dam-

age if exploited. We list the two relevant code injection vulnerabilities for NODE.JS

below.

Arbitrary Command Injection (ACI)

When user-provided inputs are passed directly to shell commands, attackers can

leverage known shell escapes and inject additional commands which will run with

the same privilege as the user running the node process. For example, an attacker

18

can insert a semicolon in his query like so: (“rm -f file; ...”) so that he may

run additional commands on the system. This could lead to a full compromise of the

system, depending on the privileges of the node process [50].

Arbitrary Code Execution (ACE)

Similarly, if user-provided inputs are directly evaluated via functions like eval or

new Function(), this leads to a code injection vulnerability as well. An attacker

can leverage this by injecting malicious JavaScript code that will be evaluated. For

example, the code can call any function or modify any variable accessible within

the scope of the call to eval. Furthermore, this attack even allows an attacker to

run shell commands with the same privilege as the user running the node process,

by importing the child_process module and running the exec function from the

module [19].

Note that these are severe vulnerabilities that have the potential to lead to a full

compromise of the targeted system, since the attacker can run any they wish. Now

that we have a clearer picture of the vulnerabilities that we wish to find and their

severity; we will next explain the technique used to find these vulnerabilities in our

context - dynamic taint analysis.

2.4 Dynamic Taint Analysis

Dynamic taint analysis is a technique used to analyze data flow from one variable to

another variable using information given or extracted at runtime [68]. We do so by

keeping track of the influence of a variable in the entire system, (i.e. we can see how

other values in the system are affected by the original variable). In our context, this

means that we are able to keep track of how user provided input is used throughout

the program and the dependencies of the program, so if a user provided input could

influence the argument to sensitive functions like eval, we would be able to detect

19

it and flag it as a vulnerability. Also, because it is dynamic, given the input to the

program, we know that the variables that are marked as tainted at the end are indeed

the variables that are likely influenced by the original input, since we know exactly

which paths were taken by the program, unlike in static analysis.

While dynamic taint analysis has been used to find confidentiality leaks [40][37],

here, we will mainly focus on the use of dynamic taint analysis to find vulnerabilities,

like in [60]. Below, we will define some working definitions that will be used in the

rest of the thesis.

2.4.1 Definitions

We first present an overview of some terminology that we will be using for the rest of

the thesis. We borrow terminology used in [68] which is now standard terminology

in this domain.

1. Source. A source refers to locations where taint will propagate from. Con-

cretely, these are the variables that are directly controllable in some fashion by

a user or attacker and are provided as input to the package’s public interface.

By identifying a source, we will be able to understand whether the input from

the source influences the internal state of the system in a way that we deem

to be sensitive or dangerous through dynamic taint analysis. An example of

a source would be a string input provided by a user in an application that we

wish to inspect.

2. Sink. Earlier, we have defined code injection vulnerabilities. These vulnera-

bilities are the result of passing untrusted input to vulnerable functions, like

eval. Intuitively, when we encounter such a function and the attacker controls

the argument to the function, we want flag an error to the analyst and halt

execution of the program. These functions are known as sinks in dynamic taint

20

analysis. As part of our analysis, we need to identify sinks that will be used

by our framework, for example, functions that are vulnerable to ACI, like the

execSync function, which simply passes the arguments to a shell. This means

that attackers can chain additional commands if they control the input to the

function. When the attacker controls the argument at the source and it influ-

ences the argument at the sink, we say that the data flows from the source to

sink, and we have reached the sink with a tainted input, and we flag the result

to the analyst.

3. Taint tracking. Finally, we need a way of keeping track which variables are

affected by the input, or the source. We may think of the taint as a flag that

tells us whether an attacker has some influence over the variable. Obviously,

the source must be tainted (it is defined to be attacker controlled!), but we

must also mark values that are affected by the attacker controlled variable as

tainted (for example, if they were assigned to the variable directly), and those

variables that depend on tainted variables should themselves be tainted. In the

next section, we will elaborate on how taint is transferred from one variable to

another, in the process of taint propagation.

2.4.2 Taint Propagation

The taint flag is associated with every value influenced by the source, which includes

the source itself. However, we have yet to define the notion of influence, and indeed

this varies from implementation to implementation. Broadly speaking, we want to

propagate taint from one value to the next if there is a data flow between them.

For example, if a variable was assigned to a tainted value, then the variable should

be tainted. When this happens, the tainted flag on the variable is set, and the

taint would be propagated. However, there are many situations where the degree

of influence is ambiguous (for example, in implicit flows, which we will discuss at

21

the end of the chapter), and individual implementations have to make decisions to

balance the tradeoffs of the taint analysis. These decisions are usually summarized

in a taint propagation policy defined by the implementer [57].

Precise vs. Imprecise Tainting

Another part of tainting we have yet to discuss is the granularity of tainting. Previ-

ously, we have worked with values and variables in our definitions, but here, we will

make clear what these values and variables refer to, and give two working definitions

that we will use in our thesis.

1. Precise Tainting. We say the tainting is precise in the context of JavaScript

if for a given tainted string, we know which exact bytes of the characters are

tainted, and for an object, we know which properties of the object are tainted.

Note that arrays are objects in JavaScript, and the array indices are properties

of the array object. Intuitively, we want this notion of tainting because attacks

in JavaScript tend to happen from string operations (e.g. passing a unsanitized

string to a vulnerable function, as described in the above sections), so keeping

track of taint on individual characters of the string allows us to capture taint

at a finer grain and reduce false positives [62].

2. Imprecise Tainting. We say that tainting is imprecise in the context of

JavaScript if we do not know which exact properties of a object or indices of

string are tainted, so we assume that the whole object/string is tainted. In

this case, we may have overtainted. In other words, some properties of the

object or indices of the string may not be controlled by the source, but we

have mistakenly flagged them as tainted. In this case, we might find false

positives at the end of the analysis. This is however necessary if there is no

way of figuring out the exact indices/properties that needs to be tainted during

22

taint propagation (e.g. when we have no way of observing how the input was

interacted with, for example in a native function).

We want to be precise as much as we can in our analysis to reduce false positives,

but at the same time we still want to propagate taint even in cases where we are

unsure of the exact location of the taint. In this case, we do not want to undertaint,

that is, we do not want to lose track of influenced variables which could eventually

end up at a sink. We overcome this problem by overtainting, where we fall back to

an imprecise taint policy to reduce false negatives.

2.4.3 Explicit and Implicit Flow

Finally, we look at cases where data flow is ambiguous, i.e. there is an influence

of the variable by the source, but the influence is not a direct flow of data. If we

look at the example in Listing 2.1, we see that when the variable x is true, then the

variable y is 1. Otherwise, when the variable x is false, then the variable y is 0. Just

by inspection, x obviously influences the variable y, so one might think our analysis

should taint y if x is tainted. However, data from x never flows to y directly (e.g.

via assignment). This is an implicit flow of data, where the tainted value is used

as a control flow dependency. In general, handling taint propagation in this case is

context dependent [48].

1 function i m p l i c i t f l o w (x) {
2 var y ;
3 i f (x) {
4 y = 1 ;
5 } else {
6 y = 0 ;
7 }
8 return y
9 }

Listing 2.1: Implicit flow in JavaScript

23

For the rest of this thesis, we will focus on explicit flow of data. The class of

vulnerabilities that we wish to study (where user provided strings are passed to

vulnerable functions) are derived from explicit flow of data, where the whole string

or parts of the string are passed from one function or operation to the next [71].

We argue that implicit flow of data is less of a problem in this context, and later

in our evaluation in Chapter 5, we show that none of the existing case studies with

exploitable code injection vulnerabilities relied on propagation of taint for implicit

flows.

24

3

Related Work

Below, we summarize the findings and methodologies from prior work, which has

significantly influenced our approach taken in our implementation. We will first

discuss methods employed for doing dynamic taint analysis in JavaScript. Then, we

will look at evaluation that has been done on packages in the NPM ecosystem.

3.1 Dynamic Taint Analysis in JavaScript

One of the first practical implementations of dynamic taint analysis to find vulnera-

bilities was introduced in 2005 in the seminal work, TaintCheck [60], to find bugs in

C programs. Since then, people have expanded on the work to see if the same tech-

nique can be applied in other settings [59][35][81]. In this section, we focus on the

efforts that have been made in using dynamic taint analysis in JavaScript programs.

Historically, researchers have been looking at applying dynamic taint analysis for

JavaScript on the client side. In recent years, with greater adoption of JavaScript on

the server side, more researchers have looked into ways of analyzing JavaScript on

both platforms [34], which is the direction we are aiming towards in this thesis.

In the following sections, we break down prior work on dynamic taint analy-

25

sis for JavaScript into two different sections. We first look at how dynamic taint

analysis have been implemented traditionally, via modifications to the JavaScript

engine. Then, we look at alternative approaches that leverage on program rewriting

to achieve the same effect.

3.1.1 Taint Analysis on the JavaScript Engine

Nentwich et al. was one of the earliest to implement dynamic taint analysis on

JavaScript back in 2007 [58]. In their work, they modify the Firefox web browser

in order to detect potential cross site scripting (XSS) confidentiality attacks. They

noted that modifying the underlying JavaScript engine was “a considerable engineer-

ing effort”. They describe their taint propagation policies for assignment, operations

on values, control structures, function calls and dynamic code generation. In particu-

lar, they taint conservatively - for operations that they can’t be sure which variables

will be tainted, they taint every operation in the program. For example, a tainted

scope is created for dynamic code generated by eval, meaning all operations under

the scope of the dynamically generated program will be tainted. A similar rule is

also applied for implicit flows, and knowledge of the implicit flow via static analysis

is augmented on top of their dynamic taint analysis for handling such flows. How-

ever, the authors noted the false positives that occurred due to conservative tainting,

which may not be desirable in a practical implementation.

Saxena et al. presented FLAX, an alternative implementation which modifies the

browser engine for Safari to detect a different class of attacks - client-side validation

(CSV) attacks, that occurs when client-side components use untrusted data [67]. In

their approach, they modified the engine to produce a trace of the program execution.

The trace produced is in a custom format, JASIL, which is a simplified intermediary

language which supports a subset of JavaScript that is commonly used in real world

applications. This simplified language allowed them to reason about character level

26

precise dynamic taint analysis on the program execution trace. They leverage this

dynamic taint analysis to perform blackbox fuzzing over the input space to find

a witness - i.e. a working exploit for the bug. In their treatment, functions that

perform dynamic code generation is considered a sink, and hence no further taint

propagation is needed. Their approach is largely successful, with no false positives

and even discovering as many as 11 vulnerabilities in the wild, out of the 40 case

studies they looked at. However, completeness is an issue in their approach, since

not all JavaScript operations are supported.

Other ways were soon developed to support the full semantics of JavaScript. In

particular, instrumenting the JavaScript interpreter to allow for taint tracking be-

came a popular approach. LeakTracker is one such example; they implemented taint

tracking in Firefox’s SpiderMonkey engine via instrumentation of the JavaScript

bytecode interpreter [77]. They note that 2400 lines of code were added to do taint

propagation and taint tracking. Their approach takes into account interactions be-

tween principals via principal-based tainting and does not propagate taint in trusted

contexts to achieve better performance. They also explicitly handle dynamic code

generation by propagating tags from the principal to the generated code, before

relying on the instrumented bytecode to propagate taint.

Leveraging on new developments and expanding on the success of the approach

of FLAX, in 2013, Lekies et al. published a large scale study of client side vulner-

abilities (in particular, DOM-XSS, which is cross site scripting done via injecting

directly to the document object of the page) [54]. The study was driven by tooling

they developed, which modifies the open-source V8 JavaScript engine for Chromium

and attaches taint information to every object in the JavaScript runtime. Using

this modification, they were able to achieve full coverage of JavaScript APIs and

adherence to all JavaScript semantics while still allowing taint to be tracked at a

character precise level. Through a validation approach similar to FLAX, they ap-

27

plied a context dependent exploit generation algorithm to find working exploits on

their targets. Using this method on Alexa’s top 5000 websites, they identified a

total of 6167 vulnerabilities spread over 480 domains. However, optimizations in

the JavaScript engine would have to be turned off for operations on strings as taint

information would be removed otherwise.

While such implementations on JavaScript engines offer advantages (such as the

ability to observe the system state completely, and significant performance bene-

fits), the engineering effort required is significant. These engines were engineered to

have performance at the forefront, so augmenting taint information to these imple-

mentations would often result in further modifications in other parts of the engine

that make assumptions on the structure of the JavaScript object. With the ongoing

maintenance that is required for every update to the browser and new updates to the

ECMAScript specifications, such engineering efforts are often unmaintainable in the

long term [51]. In the context of offline analysis where run time performance is less

of an issue, alternative approaches have been proposed to allow for such analyses to

be used in new contexts where JavaScript can also be applied.

3.1.2 Engine Independent Dynamic Taint Analysis for JavaScript

To solve the problem of having a engine agnostic framework, two main approaches

have been explored by prior work. The first attempts to solve the gap between se-

curity needs and practical usage needs by developing a JavaScript interpreter specif-

ically to perform taint tracking. The second approach leverages on the existing

JavaScript engine to remain semantically equivalent, and instead instruments each

JavaScript operation via source-to-source rewriting so taint can be tracked and prop-

agated accordingly.

28

Custom Implementation of JavaScript Interpreters

One approach taken by Hedin et al. involved building a JavaScript interpreter on top

of JavaScript to keep track of information flow [46]. The authors noted that building

it on JavaScript enabled a general deployment for their framework. Firstly, it could

run on the Firefox browser simply by installing a browser extension containing the

interpreter, Snowfox. Secondly, it could also run on NODE.JS simply by installing and

using a package. The interpreter covers the full ECMAScript 5 standards and passes

all standard tests in the SpiderMonkey test suite, hence proving that it keeps the

same semantics as the underlying JavaScript engine. They later showed that such an

approach can be used to detect client side vulnerabilities on the web [47]. However,

one downside is that it only supports up to ES5 in non-strict mode, meaning that

newer versions of JavaScript will not be able to run on their framework, with no

clear, easy way of running newer versions, since each new feature would have to be

implemented in their interpreter. The authors also note the inherent tradeoffs of

doing an engine independent analysis. In particular, native functions would either

have to be rewritten in JavaScript (in what they call a deep model) or a summary

must be provided on how things should be tainted (in what they call a shallow

model).

Such an approach, while semantically equivalent, suffers from much of the same

problems as modifying JavaScript engines. Researchers who wish to extend or update

their framework would realize that they have to modify much of the interpreter to

get the results that they want, and it soon became clear that the engineering effort

required is non-trivial. Therefore, better approaches were sought in recent years,

particularly through program rewriting.

29

Program Rewriting

Much of the engineering effort of the previous approaches is actually derived from

attempting to understand and modify the interpreter without breaking functionality.

For modern JavaScript engines, we have seen that this is not an easy task, and it is

unclear that a custom JavaScript interpreter makes the modification easier. Program

rewriting offered a way of reducing the amount of modifications needed, by deferring

all JavaScript operations to the underlying JavaScript interpreter, while enabling

researchers to customize the operations that happen before and after each operation

is performed (so taint can be propagated, for example).

One of the first successful attempts at using program rewriting for dynamic taint

analysis of JavaScript was published in 2015 by Chudnov et al. [37]. In their frame-

work, they perform source-to-source rewriting to inline a reference monitor that

enforces information flow control policies. Their framework has almost complete

support of the ECMAScript 5 standard, as well as support for web APIs, which

is an important part of their target domain. They introduced many ideas that we

will be using in this thesis. In particular, they propose that boxing of values would

be the ideal way of handling values and storing taint information. We will lever-

age on this idea of boxing values with slight modifications in our implementation.

They also perform operation emulation to emulate parts of the complex semantics

of JavaScript in their inlining code, in order to accommodate the boxed values that

now exist in the environment. One key idea that we will use here is deference to

the actual runtime in order to minimize implementation of the actual semantics of

the operation. However, in their implementation they still ended up reimplementing

parts of the ECMAScript semantics because they have to emulate some parts of the

operation in their environment. Each operation is converted to a monitor operation

where they specify the semantics manually. For example, addition is converted to

30

the opadd monitor operation. We will improve on this in our framework and with

a more general approach to handling the operations while still being semantically

equivalent.

In a similar vein to the boxing ideas in [37], Kannan et al. proposes using proxies

to box values and rewriting via Sweet.js macros to instrument all operations in order

to simulate virtual values, which can then be used for dynamic taint tracking [49].

The boxing idea was also used in DexterJS [62], which introduces their own

source-to-source rewriting to achieve character level dynamic taint analysis as well as

automatic patching of DOM-XSS vulnerabilities on the client-side [61]. Their boxing

approach promotes primitives to objects so that taint can be tracked on primitives.

We will see a similar approach in our implementation. They also perform automatic

validation of vulnerabilities much like in FLAX [67], and through this they created a

robust framework that found 820 zero-day DOM-XSS vulnerabilities on Alexa’s top

1000 sites. Because the rewriting was done on a proxy server before being sent back

to the user-agent, the rewriting is therefore browser agnostic. We argue that there

are better ways of being engine agnostic without relying on a rewriting server, such

as the pure JavaScript approach taken by JSFlow [46], as we have seen earlier.

With many custom implementations of instrumentation of JavaScript, it became

clear that there was a gap caused by the lack of standard tooling. This has led to the

implementation and reimplementation of frameworks with the same functionality. To

fill this gap, the Jalangi framework was first developed in 2013 [69] which provides a

simple way for researchers to add on dynamic taint propagation and even symbolic

execution through utilizing the instrumentation hooks provided by the framework,

with support on both JavaScript on the server-side and the browser-side. It was

further improved and the new implementation, Jalangi2 [31], which was open sourced

and had full support for all JavaScript APIs up to ES5.1. It has since been used

in other applications, such as finding bugs via symbolic execution in the ExpoSE

31

framework by Loring et al. in 2017 [56].

Building on top of Jalangi2, Karim et al. proposed a platform independent way

of performing dynamic taint analysis on JavaScript applications [51]. Their main

motivation was to deploy the infrastructure on the Samsung Tizen smartwatch plat-

form, at a higher performance than the work done by [37]. In order to do so, they

use the hooks that are provided by the Jalangi2 framework to intercept operations

and transform them into instructions on their abstract stack machine. This abstract

stack machine performs the taint tracking and propagation required for the dynamic

taint analysis. They applied this approach and validated vulnerabilities in 17 NPM

packages. They also ensured that their approach did not flag benign packages by

validating them on 5 popular safe packages. However, their approach to tainting

only allowed for tainting of entire values, unlike the byte/character level tainting

that was supported by previous approaches. Furthermore, their abstract machine

tainting identifies variables by name and scope, which is error-prone, especially since

scoping in JavaScript is complicated. We argue that such a complicated mechanism

is unnecessary, and we showcase our approach which identifies values by their ref-

erences, thereby simplifying taint tracking and allowing for byte level taint tracking

for strings.

A dynamic taint analysis approach was later used to perform analysis on the top

1000 NPM packages [72]. In particular, Staicu et al. utilized NodeProf [73] (which

uses Jalangi2 underneath the hood) to perform instrumentation and dynamic taint

analysis on the test cases of the top 1000 NPM packages in order to obtain taint

specifications for these libraries. This was later passed into a commercial static

analysis engine to verify the vulnerabilities. However, as the focus of their paper was

finding taint summaries on libraries and applying the taint summaries on a static

analysis engine to find bugs, there was less of a focus on the correctness of their taint

tracking and propagation. Furthermore, their approach does not support byte level

32

tainting.

Finally, recent work in this space by Kreindl et al. looked at implementing

dynamic taint analysis that worked across multiple languages (including JavaScript

running NODE.JS) [53]. The paper proposed an implementation leveraging on the

universal virtual machine, GraalVM [80], which allows for running of applications

written in a wide range of languages, including JavaScript, Python and C++. They

utilized the Truffle language [41] to build instrumentation required to perform the

taint tracking and propagation, but such an approach is still largely untested in

practice.

To summarize, we see a general trend towards platform independent approaches

in dynamic taint analysis as JavaScript starts to see more use beyond the browser.

JavaScript has made its way into server-side applications and more recently, in desk-

top applications. Therefore, we aim to build a dynamic taint analysis framework

that can be deployed across different contexts with minimal modifications, yet at the

same time be flexible enough to change the underlying instrumentation framework

so that newer versions of JavaScript can be supported.

We also note that different approaches were applied to handle dynamic code

generation. In the next section, we summarize how other work has tackled this

problem in their implementation.

3.1.3 Handling of Dynamically Generated Code

Regardless of which implementation one chooses, special handling is still required for

dynamic code generation. and we will have to handle it as well in our tool in this

thesis. In particular, we wish to be able to propagate taint within a call to eval,

even if the input to eval is already tainted. Below, we summarize the approaches

taken by prior work.

1. Eval as a sink. eval is defined as a sink in the framework so once execution

33

reaches eval with a tainted argument, the framework raises an alert. This is

the approach taken by [72], [54] and [51]. However, such an approach limits the

applicability of the framework. In particular, client side scripts on the browser

heavily utilize eval in the wild, so if the researcher was looking for a different

sink in this context (for example, document.write), they will not be able to

analyze it using such a framework.

2. Instrumenting dynamic code. If the framework supports it, dynamic code

is instrumented and taint is propagated with some special conditions. This

is the ideal case, since we can continue to analyze the code with the same

granularity. LeakTracker propagates the caller tag [77] to the generated code

so that the variables in the dynamically generated code can be properly tainted.

FLAX also handles eval explicitly in their trace [67], as does DexterJS in their

implementation [62].

3. Static analysis. One last approach combines runtime information with static

analysis on the dynamically generated code. At runtime, we do know what the

code generated will be, and so if we analyze the code and look at what values

should be tainted, we can mark them as tainted after the call to eval. This is

the approach taken by Chen et al. [36], and they taint all left-hand side (LHS)

of assignments in the dynamically generated code. This is as good as we can

do without instrumenting dynamically generated code. However, because their

analysis is done in the V8 engine, we cannot apply their technique directly in

a platform agnostic implementation written in JavaScript, since we don’t have

access to all objects or values that have been defined.

In this thesis, we will explore a new method which combines static analysis with

program rewriting to achieve the same effect as the approach in [36], even without

34

access to the underlying JavaScript engine. We do this by providing a shared context

between our instrumentation framework and the instrumented code.

Having looked at the dynamic taint analysis and how they handle dynamic code,

we will now look at prior work done on the context of our evaluation, the NPM

ecosystem.

3.2 Analysis of NPM Packages

The NPM ecosystem is rather new, having only existed for 10 years [15]. Yet, it is

one of the biggest ecosystems of software [83]. In the past 5 years, a lot of effort has

been invested to better understand this ecosystem and the security of the packages

in this ecosystem. We summarize the key results below, and we see how we can add

value to research in this space.

3.2.1 Ecosystem Analysis of NPM Packages

Early work done in understanding the NPM ecosystem noted the high dependency

between packages within the ecosystem, with 32.5% of the packages being dependent

on 6 or more packages [79], and they noted an increasing trend of interdependence

between packages. It was later found that many of the popular micropackages that

developers depend on were mistakenly thought to be “well implemented and tested”,

where in reality only 42.5% of these popular packages contained any form of testing

in their packages [33]. Such heavy interdependence can cause ecosystem breakdowns.

For example, when the left-pad package was removed by its author, thousands of

packages that relied on it (even large, popular ones like Node and Babel) could no

longer function. The disruption resulted in a total downtime of 2.5 hours, and NPM

had to unpublish the package against the will of the author to fix the issue [78].

Recent analysis done by Zimmermann et al. in 2019 concluded that packages in

NPM were still highly interdependent and malicious code or vulnerabilities found

35

in a single package can have huge ripple effects in the whole ecosystem, much like

before [83].

To combat this threat, researchers have been looking at different ways of weeding

out vulnerabilities automatically from packages in this space. Below, we look at large

scale studies of code injection attacks in NPM modules and note their findings.

3.2.2 Security Analysis of NPM Packages

The first large scale study of code injection attacks in NPM was by Staicu et al.,

where they performed an empirical study on 235,850 modules to see how widespread

code injection vulnerabilities could be [71]. They were interested in calls to the

child_process module and eval function, as these were the most prevalent code

injection attack vectors. In their study, they performed a regular expression-based

search that detects the usage of the above APIs, and found over 16000 modules that

use exec or eval directly, and over 15% of the packages in NPM were found to be

dependent of a package that calls exec or eval. However, such calls do not necessarily

imply code injection vulnerabilities, since the calls may never take arguments that are

user-provided, so a definitive method of verifying vulnerabilities was still required.

A larger scale analysis improves on this result, and was conducted by Gong to

identify bad behavior in NPM packages [44]. In his study, he presented NodeSec,

a framework that analyzes the contents of the entire package, including the install

scripts of the package. The framework hooks system operations such as network

activity, file system activity, and shell commands at the operating system level, and

verifies that running the package and its methods do not result in any undesirable

behavior. Using this technique, he analyzed over 330,000 NPM packages and found

more than 300 previously unknown vulnerabilities, which were manually verified and

reported to the authors of the package. However, we believe that this method can

only flag potential bad behavior since all shell commands are flagged in their study

36

and manual analysis is still required to see whether a code injection attack is possible

in that context.

Finally, in recent literature, Staicu et al. presented a way of analyzing libraries

at scale by extracting taint specifications via dynamic taint analysis on test cases

and applying static analysis on the libraries using the extracted taint specifications

[72]. Through their efforts, they analyzed the top 1000 NPM modules and their

dependencies for a total of 1393 NPM modules and they created 136 new alerts

which likely corresponded to actual security vulnerabilities.

All in all, we see that there is an ongoing effort in finding code injection attacks

in the NPM ecosystem, though a fully principled approach has yet to be applied on

a large scale for code injection vulnerabilities in this ecosystem. In the next section,

we will put the pieces together and present a dynamic taint analysis framework that

shows promise in discovering code injection vulnerabilities at scale.

37

4

NodeTaintProxy

We now present our dynamic taint analysis tool, NodeTaintProxy. We will first look

at an overview of our implementation, followed by a study of the overall architecture

of our implementation. We elaborate on the details of each component of our archi-

tecture and see how they fit into the whole picture in the sections below. We then

look at our novel approach in performing taint analysis for dynamically generated

code, particularly when the argument to eval or new Function is tainted. We fi-

nally discuss some features of our implementation, such as in our handling of native

functions and byte-level tainting.

4.1 Architecture

NodeTaintProxy is a dynamic taint analysis framework written in TypeScript that

uses Jalangi2 as an instrumentation framework. To start, we give an overview of

the inner workings of our dynamic taint analysis framework. We define how each

object/value is uniquely identified, how each unique identifier is tagged with a taint

bit, and we give a description of how the analysis works.

38

4.1.1 Overview

At a high level, the framework first performs rewriting of the source code so that

each operation is instrumented. At the beginning and end of every operation, our

instrumentation updates the taint information of each value in the system via inter-

action with the internal data structures. This goes on until we reach a sink function

like eval, and we determine whether a tainted argument was provided to the sink

function. If it is, we alert the analyst. The specific mechanisms for each component

is described below.

4.1.2 Uniquely Identifying Primitives via Wrapping

In our framework, we identify unique values by their references/pointers. A wrapper

map, MW , defines a mapping of object references to their unique IDs. Recall in

Chapter 2 that primitives are not identified by references. We solve this problem by

wrapping the primitive using the Proxy object class, and store the wrapped value

in the wrapper map. The wrapper map, MW , now defines a mapping of object

references in to their unique IDs and unwrapped value. Because an instance of a

Proxy is an object, each primitive in the code can be uniquely identified. This is

important because primitives which have the same value should not map to the same

identity. For example, the value 1 defined statically in the code should not have the

same identity as the value 1 provided as a tainted input to the function.

Each time we unwrap, we push the ID for the wrapped primitive to the ID stack

for that particular operation. Note that for objects, we push a dummy ID. The same

goes for when we wrap - we consume an ID on the ID stack. This means that when

we unwrap in one order and rewrap in the reverse order, all wrapped primitives will

preserve their IDs.

The IDs are used to uniquely identify values at runtime. With this unique identity,

we can use them to associate taint information with the values in run time in our

39

framework. We will see in later sections how this identity is used for taint tracking

in a later section.

With unique identities for all values in the system, we will now proceed to show

how to initialize our analysis.

4.1.3 Initializing the Analysis

The analysis is composed of the package we wish to test (together with its dependen-

cies) and an input we wish to probe the package’s exported function with. The input

can be thought of as a possible user-provided input that can be passed to the package

if the package was deployed in production. Since this input is attacker controlled,

we taint the input.

We first have to instrument the underlying package that we wish to test, together

with an analysis file which contains a call to the exported function of the package

that we wish to test. The analyst would taint the attacker controlled input and

specify the sinks that they wish to keep track of. For our purposes, we consider calls

to the eval function or the exec function of the child_module process as sinks,

unless otherwise stated.

The instrumentation calls the hooks defined in our architecture, and allows us to

transform the original JavaScript operations into our own custom defined operations.

We elaborate more on how we transform each operation below.

4.1.4 Operation Semantics of Our Tool

The instrumentation intercepts all JavaScript operations to perform the transformed

semantics of our tool, which modifies the original semantics to account for wrapped

values in the runtime. Figure 4.1 shows the interaction between each layer for each

operation that is instrumented. Referring to Figure 4.1, we perform the following

steps in our transformed semantics:

40

1. The rewritten code calls the relevant Jalangi2 hook in our instrumentation

layer.

2. We signal to the wrapper layer to unwrap all arguments involved. If the

operation was a method call, we also unwrap the object that the method was

called on.

3. We perform the actual operation on the unwrapped arguments by

deferring to the JavaScript run time. We store the unwrapped result.

4. We rewrap all values in an order that is reversed from the order in

step 2. This maintains the IDs of primitives. We also wrap the result of

the operation.

5. We signal to the taint layer to propagate taint.

6. The taint layer looks up the relevant taint semantics that apply for the

operation and taints the respective arguments and/or result, following the taint

semantics.

Through this, we are able to defer all operations to the JavaScript runtime, thus

reducing burden of mangling with the semantics. With this setup, we now claim the

following:

Claim. The semantics of this transformed operation is equivalent to the seman-

tics of the original operation.

Justification. Since the instrumentation is semantically equivalent (by [69]), we

simply need to show that the result of the operation in the transformed program is

the same as the original program. For any given operation in JavaScript, we only

defer to the runtime once all arguments are unwrapped. Note that the unwrapped

primitives have the same value as those in the original operation, and objects are

41

not wrapped in the first place. When deferred to the runtime, the operation acts on

the unwrapped arguments which are equivalent to the original arguments, hence the

result follows that of the original operation, as needed. �

The above transformed semantics allows us to achieve Proxy Transparency men-

tioned in Chapter 2, which we will see below.

Dealing with Proxy Opaqueness

One of the issues with Proxy as wrappers is that they are opaque - this means that

comparison between two Proxy objects that wrap the same primitive will give incor-

rect results. This was noted as a problem in Proxy transparency in [52]. However,

following the semantics of each operation above, we see that we unwrap each object

before performing the original operation. Thus, the instrumented wrapped primitive

comparison would behave as below:

Proxy(1)==Proxy(1) ãÑT Unwrap(Proxy(1))==Unwrap(Proxy(1)) ãÑE 1==1

Above, we notate transformation of the instrumented code with ãÑT and eval-

uation in the JavaScript runtime as ãÑE. The last statement is evaluated and we

get the result true, as we would expect. Thus, as we perform the operation on the

unwrapped primitives, this transformation gives us the correct result. Hence, we

achieve transparency of the Proxy object with respect to the == operator.

Now that we understand how wrapping works in our infrastructure and how we

maintain the semantics of the original operation, we move on to see how they are

used to uniquely identify each value to their taint entries.

4.1.5 Taint Tracking and Propagation

Recall that each value is uniquely identified by an ID in our wrapper map MW . Our

taint layer defines a map MT that stores a mapping of IDs (which are the IDs from

the wrapper map MW) to their taint entries. As an optimization, if an ID does not

42

exist as a key in the map MT , then the value associated with the ID is guaranteed

not to be tainted.

Each taint entry is a tuple pt,MP q where t defines a taint bit, which denotes

whether the value associated with the ID is tainted. The map MP defines a property

map which maps properties to taint bits. We can think of this as an auxiliary data

structure that we use to keep track of taint for characters in strings. We will use this

as a mechanism to enable byte level precision for our precise string tainting.

For each operation we intercept in JavaScript, we define rules to guide us on how

to taint the result of the operation. These rules (or taint semantics) together form a

taint propagation policy. We describe some examples of the taint semantics we have

used for the operations below.

1. Unary operations. If the operand is tainted, then the result is tainted.

2. Binary operations. If either operand of the binary operator is tainted, then

the result is tainted.

3. Field access. If the object is tainted, or the property of the object is tainted,

then the result of the field access is tainted.

As taint propagation happens after each operation is completed, taint is propa-

gated correctly in our system with respect to direct flows. In vulnerable code, this

taint will eventually propagate to a vulnerable function like eval or exec, and in the

section below, we will discuss what happens in our infrastructure when this happens.

Reaching a Sink

When a tainted argument is passed into a function that allows for code injection (like

eval or exec), we have reached a sink. Here, a sink policy defines the granularity

of tainting that is required for an argument to be considered tainted when a value

43

that can be influenced by the attacker reaches the sink. For example, we currently

employ the sink policy anyPropertiesTainted, which states that if any property of

the argument is tainted, then the argument to the vulnerable function is tainted and

we have reached the sink with a tainted argument, and we flag to the analyst that

the package could be vulnerable. This matches the notion of the attacker having the

ability to control at least a single byte in the code injection string, which is often

sufficient to do damage to the system. Stronger guarantees can also be provided, for

example, the analyst can enforce that all properties of the argument must be tainted

through a policy like allPropertiesTainted (meaning the attacker has full control

of the argument), or some number of the properties must be tainted (meaning the

attacker has at least partial control) before we consider the argument as tainted.

When we reach a sink with tainted arguments, the analysis terminates and an

alert is flagged to the analyst. Having looked at how an analysis works, we now

describe the overall architecture and understand the interaction between each of the

components of our framework.

4.1.6 Architecture by Layers

Our framework consists of the following 4 layers - we designed them such that each

layer serves a single purpose, and we can plug in and play experimental layers that

serve the same function to see if we can achieve the different effects. Below describes

the functionality of each layer:

1. Instrumentation Layer. We instrument operations in JavaScript so that we

are able to perform our transformed semantics before and after each operation.

In this layer, we simply call hooks to signal to when an operation is beginning,

or completed. We currently use Jalangi2 [31] as our instrumentation layer,

which rewrites the program and its dependencies so that our custom defined

44

hooks are called. Note that a different instrumentation framework can be used

as long as the same operations are hooked before and after.

The operations we hook are as follows:

(a) literal - the creation of a literal value, e.g. a static string defined in the

program

(b) write - the write to a variable or property

(c) getField - accessing the field/property of an object

(d) putField - setting the field/property of an object

(e) invokeFun - invocation of a function, not including eval/new Function

(f) binary - binary operations as defined in ECMA-262, e.g. +, -

(g) unary - unary operations as defined in ECMA-262, e.g. typeof, !

(h) instrumentCode - invocation of eval or new Function

(i) conditional - branching operations such as if-then-else, ||

2. Wrapper Layer. The Wrapper layer, MW , is defined as a mapping of object

references to IDs and unwrapped values. This layer also defines the wrapping

construct used, together with the wrapping and unwrapping sequences for each

operation instrumented. We currently use the Proxy object class due to its

in-built support for reflection, but we have also experimented with using the

Object class as boxes (i.e. encapsulating a primitive in an Object like in [62])

simply by changing the wrapper construct within this layer.

3. Taint Layer. The taint layer is responsible for keeping track of the taint as-

sociated with each value in run time. We define it as a map MT that stores a

mapping of IDs to taint entries. Each taint entry is defined as a tuple pt,MP q

where t defines a taint bit, and MP defines an auxiliary data structure that

45

maps properties to taint bits (we use this to keep track of precise string taint-

ing). An analyst can swap out the taint layer with their own data structure

used to store taint and other metadata. For example, if they want to keep

track of sanitization functions used, they can incorporate that information at

this layer by modifying the taint entry to capture that information, and incor-

porate sanitization logic into the taint semantics of the taint policy manager.

4. Taint Policy Manager. The taint policy manager implements the taint prop-

agation semantics in the taint propagation policy, as well as the sink policy.

An analyst that wishes to modify the taint propagation semantics for one of

the operations can simply swap out the existing semantics and incorporate

their own semantics at this layer. Other taint semantics can also be defined,

for example for native functions or for dynamically generated code. We de-

fine a native policy module to describe semantics for native functions that

we model, as well as static tainter module to taint dynamically generated

code if the code generated is tainted. For sink policies, we default to using

anyPropertiesTainted as our sink policy, but an analyst can swap this out

with allPropertiesTainted or any other custom sink policy as they deem fit.

Finally, a controller is built on top of the instrumentation layer and presides over

all interactions between the layers and the JavaScript run time. Its responsibility is

to orchestrate each layer to update the data structures of each layer as needed. The

architecture is summarized in Figure 4.1.

46

Orchestrator/

Controller

(executes transformed

semantics)

Sink

Policy

Native

Policy

Static

Tainter

Taint Policy

Manager
Taint Layer

Wrapper

Layer

Instrumentation

Layer

(Jalangi2)

y + s

Original Source Code

JS Runtime

(1) Rewrite:

binop hook

triggered

(2) Unwrap

(4) Rewrap

(3) Execution

(5) Propagate Taint

(6) Look up Taint Semantics

Transformed Semantics

y’ := unwrap(y);

s’ := unwrap(s);

r’ := y’ + s’

s := wrap(s’);

y := wrap(y’);

r := wrap(r’);

taint_binop(y, s, r);

return r;

Figure 4.1: Segregated Architecture of NodeTaintProxy

4.2 User Interface - Interaction via Ghost Functions

Below, we describe in steps how an analyst can write their own analysis in our

framework for a package that they wish to study. We describe the usage of our

framework on the NPM module ps, which contains a code injection vulnerability in

versions ă 1.0.0 [1].

1 var cp = r e q u i r e ('child_process') ;
2 j a l a n g i s e t s i n k (cp . exec) ;
3 var ps = r e q u i r e ('ps') ;
4 var e v i l s t r i n g = "abc"

5 j a l a n g i s e t t a i n t (e v i l s t r i n g) ;
6
7 ps . lookup ({ pid : e v i l s t r i n g } , function (err , proc) {
8 // this method is vulnerable to command injection

9 }) ;

Listing 4.1: PS Module Analyzer

47

The analyst interacts with the framework via ghost functions (prefixed with

__jalangi<...>__) that are globally defined in the framework. This allows the

analyst to set up sources, sinks, and verify parts of their analysis via communication

with the framework.

4.2.1 Setting up Sinks

The analyst first has to define sinks that they wish to keep track of in the program.

Currently, by default, eval is conisdered a sink since it is a code injection vector,

but we show that it is trivial to add your own. Using the __jalangi_set_sink__

function in line 2 of Listing 4.1, the analyst can specify the function they wish to

keep track of as the sink by passing it as an argument to the ghost function. Because

the underlying function references do not change throughout the execution of the

program, we can simply compare the function reference before every function call to

see if the sink has been hit with tainted arguments.

4.2.2 Setting up Sources

The analyst will then define sources, which are user controllable input to the package

under investigation. In this case, the lookup function in the module ps takes in a

string representing the pid to look up in the operation. We define a valid argument

that can be passed into the library in line 4 and set the parameter to be tainted via

the ghost function __jalangi_set_taint__ as per line 5 in Listing 4.1. The source

is now tainted and ready to be passed to the function under investigation.

4.2.3 Running the Analysis

In the analysis file, we import the package as required (as per line 3 in Listing 4.1)

and call the function we wish to test with our tainted arguments (as per line 7 in

Listing 4.1) . We provide a Makefile with the casestudy command that compiles

48

our infrastructure written in TypeScript and runs the case study specified via the

FILE parameter, and we see the results of our analysis below in Figure 4.2.

Figure 4.2: Output of Running the Analysis for the module ps

We see that the sink exec was reached in the program, and the tainted argument

‘abc’ defined in line 4 in Listing 4.1 propagated to the sink. By our sink policy of

anyPropertiesTainted, the argument was marked as a tainted input to our sink

and an alert was flagged to the analyst. We have verified that a command injection

vulnerability is present in our case study, as per the advisory in [1].We have now

seen how our framework performs on a known vulnerability in practice.

However, there are special cases we wish to handle. For dynamically generated

code, eval is typically a sink and hence if a tainted argument was provided, an alert

would be raised and execution would stop. However, if the analyst does not want

eval to be a sink, we would still have to propagate taint during the execution of

the dynamically generated code. In the next section, we will a explore novel method

that we implemented in our framework to propagate taint in the case where eval

or other dynamic code generation functions are not sinks (for example, when safe

versions of them are used [24]), and see how we handle the case when the arguments

to eval are tainted.

49

4.3 Handling Tainted Dynamic Code Generation

As we have seen in Chapter 2, eval is a common construct in JavaScript code and

sometimes use of it may be justifiable [82]. In such cases, eval should not be marked

as a sink. To motivate our discussion, we show a simple example where a tainted

argument is provided to eval in line 3 of Listing 4.2.

1 var x = "var h = 'Hello';" ;
2 j a l a n g i s e t t a i n t (x) ;
3 eva l (x) ;

Listing 4.2: Original Module Code

As we can see, after the execution of the eval statement in line 3 of Listing

4.2, a new variable h is defined in the current scope of the program, and because

the dynamic code is tainted, the variable h should be tainted. However, our taint

propagation semantics currently do not describe how to taint in such an instance.

The goal is to propose a way to taint variables that were introduced or modified in

the current scope by tainted code. Unfortunately, this problem turns out to be com-

plicated as we are working through instrumentation, and we list the complications

below.

4.3.1 Challenges

Ideally, in such a case, we rely on the instrumentation engine to tell us when we

enter dynamically generated code, and we check to see if it is tainted. From there,

we use an approach similar to the tainted scope approach in [58] to taint new vari-

ables introduced to the scope. However, prior experiments done in our framework

showed that the dynamically generated code do not trigger the hooks defined in our

infrastructure, so we cannot rely on the instrumentation layer for this.

50

We also realized that if we could get a hold of the context of the evaluation of the

dynamically generated code, we could simply pass it to a vm construct in NODE.JS,

which allows us to execute code in a predefined context [23]. From there, we can

simply compare to see what new variables were introduced in the current scope and

taint them as needed. However, the complexity of the instrumentation meant that it

was difficult for us to get the scope of the currently executed operation. In particular,

we are only given access to the string representing the code that will be executed in

the instrumentation layer.

An alternative approach would have to be developed in order to taint the newly

introduced variables and modified variables in scope. For this, we take inspiration

from the static analysis approach of Mystique [36], which statically analyzes dynam-

ically generated code and taints those variables that are introduced or written to,

and we apply them in our context. However, without direct access to the JavaScript

runtime internals, we implement unique workarounds via program rewriting, as we

will see below.

4.3.2 Overview of Approach

To solve the issue of partial information in the instrumentation layer, we rewrite

the code at different levels so that there is a known shared context between the

dynamically generated code, the original program and the instrumentation engine.

We leverage all the information provided to us at the instrumentation layer to achieve

this effect.

Our approach takes the following steps:

1. We obtain the dynamic code generated at runtime using the hooks provided by

our instrumentation layer; in particular, the instrumentCodePre hook gives

us access to the string that will be evaluated.

51

2. With access to the string to be evaluated from above, we run our static analysis

algorithm to form a list of variables to be tainted in the current scope and global

scope. We describe the algorithm in full in the section below.

3. We rewrite the generated code so that it stores all variables that are to be

tainted in a shared context map that maps the variable name to the variable

value. We then execute this rewritten generated code.

4. In the original module, the code has been rewritten to obtain the variables

from the shared context, so that each variable can be wrapped and tainted

accordingly in our infrastructure. We then propagate the wrapped values back

into the original scope of the program.

Using this approach, we ensure that the variables that exist in the runtime are

wrapped and tainted as we expect them to be. The key to making this work lies in

the shared context, which we elaborate on in the section below.

Shared Context

The shared context forms an important cornerstone in our approach. The shared

context is defined as a map ME that maps variable names (or more generally the

stringified left hand side(LHS)) of assignments to their actual values.

In code, the shared context goes by the handle __eval_taint_map__. We see

that the shared context is used in both our rewritten dynamic code in lines 4 and 6

of Listing 4.6 as well as our rewritten module code in lines 3 - 9 of Listing 4.4.

The shared context is populated by the rewritten dynamic code, and read by the

rewritten module code, as we will see in the next few sections.

52

Module Rewriting Algorithm

In the module rewriting algorithm, we seek to read variables to be tainted from our

shared context, invoke our infrastructure to taint them, and store the values back in

the original context. We describe the algorithm that rewrites the modules below, in

Algorithm 1.

Algorithm 1: Module Rewriting Algorithm

Data: M : list of node.js modules under analysis,
tmpl: template of transformed eval call,
placeholder: placeholder value in template

Result: M 1: node.js modules rewritten
initialize M 1 to an empty list;
foreach m in M do

r := read(m);
ast := parseAST(r);
foreach node in ast do

if node is eval function call then
tmpl ast := parseAST(tmpl);
node1 :=tmpl ast.replace(placeholder, node);
ast := replaceInAst(ast, node, node1);

end

end
M 1.append(ast.toJSFile());

end

The template of the eval call passed in Algorithm 1 is as shown in Listing 4.3.

1 var e v a l t a i n t m a p = {} ;
2 t ry {
3 ${ i n s e r t eva l node here }
4 } f i n a l l y {
5 f o r (var i in Object . keys (e v a l t a i n t m a p)) {
6 var k = Object . keys (e v a l t a i n t m a p) [i] ;
7 var j = j a l a n g i s e t t a i n t e v a l (

e v a l t a i n t m a p [k]) ;
8 eva l (k + '=' + '__j__;') ;
9 }

Listing 4.3: Template for Module Rewriting

53

Through this algorithm, we see that the code in Listing 4.2 is rewritten to the

form in Listing 4.4.

1 var x = "var h = 'Hello';" ;
2 j a l a n g i s e t t a i n t (x) ;
3 var e v a l t a i n t m a p = {} ;
4 t ry {
5 eva l (x) ;
6 } f i n a l l y {
7 f o r (var i in Object . keys (e v a l t a i n t m a p)) {
8 var k = Object . keys (e v a l t a i n t m a p) [i] ;
9 var j = j a l a n g i s e t t a i n t e v a l (

e v a l t a i n t m a p [k]) ;
10 eva l (k + '=' + '__j__;') ;
11 }

Listing 4.4: Rewritten Module Code

In Listing 4.4, we first set up the shared context in the local scope, as per line 3.

We then execute the dynamically generated code in line 5. Note that the executed

code will also be rewritten when we get hold of it in the instrumentation layer, and we

will explain that in a later section. We wrap it in a try-finally block so that errors

in the eval call will not affect our tainting, but will still be propagated to the original

scope. In the finally block, we enumerate through each variable that was written

to in line 7. We obtain the stringified LHS in line 8 in the variable _k_, and wrap

and taint the value in our call to the ghost function __jalangi_set_taint_eval__

in line 9 and store the result in __j__. In line 10, we assign the LHS to the wrapped

value through an eval call, and we have that the original scope now has the wrapped

and tainted variables that were written to or introduced.

What remains is how we pick variables to be populated in the shared context,

and how the variables are populated in the shared context. In the next section, we

will explain our static analysis algorithm that dictates which variables to populate

in the shared context.

54

Static Analysis Algorithm

Recall that we are trying to taint variables that are introduced to the current scope

and global scope by the dynamically generated code in this section of our analysis.

Here, we will statically analyze the dynamically generated code string (provided to

us by the instrumentation) to see which variables in scope are modified in the end.

In Algorithm 2 defines how we do the static analysis. Note that we use esprima to

parse the source code to an AST [6] and escope to verify that the variable is indeed

assigned in the scope of the eval context [29].

Algorithm 2: Static Analysis Algorithm

Data: e: dynamically generated code string,
L: currently known variables to taint

Result: L: list of all stringified LHS to taint
initialize L to an empty list if not defined;
ast := parseAST(e);
foreach node in ast do

if node is AssignmentExpression and in scope then
L.append(node.left.toString());

end
if node is CallExpression and callee is known then

ALG(callee.body.toString(), L);
end

end

We note a few special cases in the below segment during our traversal of the AST:

1. Function calls. We treat functions as blackboxes if we do not have access

to the function internals. Otherwise, we traverse the function’s AST for each

function call and mark variables that were written to in the global scope as

variables to be tainted.

2. Conditional branches. In our static analysis, we do not have access to

runtime information and hence are not able to determine which branch would

be taken. In this case, we mark all variables that were written to in all branches

55

of execution.

3. Exceptional control flow. Much like the conditional branches, we do not

make assumptions on the control flow that was taken, and we mark all variables

that were written to in the try block, catch block, and the finally block.

At the end of the algorithm, we have a list of stringified LHS that we need to

taint. With this information, we can finally move to the last part of our rewriting -

the rewriting of the generated code to populate the shared context with this list of

variables.

Dynamic Code Rewriting Algorithm

The generated code must populate the known variables to be tainted to our shared

context so that our rewritten module code can extract it. We do this by rewriting

the generated code before returning it so the rewritten code is evaluated instead.

Below, we detail the algorithm for rewriting in Algorithm 3.

Algorithm 3: Dynamic Code Rewriting Algorithm

Data: e: dynamically generated code string, L: list of all variables to taint
Result: e1: rewritten dynamically generated code string
e1 := ‘var __orig__; try {__orig__ = eval(EVAL_STMT); VARIABLES}

catch(err){VARIABLES; throw err;} __orig__;’ ;
VARIABLES := ””;
foreach lhs in L do

V ARIABLES += “ eval taint map [‘lhs’] = lhs;”;
end
e1.bind(‘EVAL_STMT’, e);
e1.bind(‘VARIABLES’, VARIABLES);

Listing 4.5 shows the contents of the original dynamically generated code, which

we will use as an example.

1 var h = 'Hello' ;

Listing 4.5: Original Dynamic Code

56

Note that the variable h is written to, and through our static analysis algorithm

in Algorithm 2, we created the list containing the variable to taint (the list corre-

sponds to [‘h’] in our example). The transformed code for the generated code is

presented in Listing 4.6 after being rewritten by Algorithm 3.

1 var o r i g ;
2 t ry {
3 o r i g = eva l ('var h = "Hello";') ;
4 e v a l t a i n t m a p ['h'] = h ;
5 } catch (e r r) {
6 e v a l t a i n t m a p ['h'] = h ;
7 throw e r r ;
8 }
9 o r i g ;

Listing 4.6: Rewritten Dynamic Code

In line 1, we store the declare the return value of the eval statement as __orig__.

We then attempt to evaluate the original statement and store the value in __orig__

in line 3. We also populate the written variables in our shared context in lines 4 and

6. The statement populates the map so the rewritten module knows which variables

should tainted and what their values are. The evaluation is wrapped in a try-catch

block in case of errors in the original evaluated statement. If the evaluation of

the statement throws an error, we still populate the shared context with as much

information as we know in line 6, and throw back the same error in line 7. Otherwise,

if there are no errors, we would still populate the shared context in line 4, and return

the original evaluated value in line 9, as per what is required in the semantics of

eval.

Thus, at the end of the instrumentation, we have that all written variables are

populated in the shared context, and the rewriting of the original module ensures

that the newly introduced values are wrapped and tainted as we expect.

57

4.3.3 Limitations of Approach

We are aware of some limitations of our approach, and we list them below:

1. Overtainting. Since we do not have runtime information, we cannot fully as-

certain the execution path that was taken by the evaluated code. For example,

in the case where there is a conditional statement like an if-else construct,

we would have to taint both branches. The ideal case here would be to only

taint the branch that was taken, but a static analysis we will not be able to

easily derive this information, and hence we would have overtainted.

2. Nested evaluation. If an eval statement is nested (i.e. there is a call to eval

in the dynamic code), since there is no instrumentation in the inner call to

eval, we will not be able to taint variables written in that eval’d code. While

an adversary might exploit this specific loophole to foil taint propagation, in

practice, we do not see such calls being made in standard code (in particular,

none of our case studies display this behavior in a normal setting). We also

outline ways of mitigating this in Chapter 6.

We have tackled one of the key challenges in implementing a platform agnostic

approach, which is the problem of tainted dynamically generated code. In the next

section, we will look at other problems that a platform agnostic approach would

have, and how we discuss how we have approached them.

4.4 Discussion

In this section, we look at other interesting design decisions we have made in our

framework, particularly so in our context of being platform agnostic.

58

4.4.1 JavaScript Semantics

To test that we adhere to the JavaScript semantics, we studied the ECMAScript

specifications [43] and implemented tests that specifically dealt with type coercion,

weak typing and other special cases in the semantics flagged by the ECMAScript

specifications. Our implementation passed these test cases, showing that our ap-

proach is fundamentally correct. A sample of one of the test cases for equality is

provided in Appendix A.

However, without full formal semantics or rigorous testing via the Test262 test

suite [32], we do not claim full semantic equivalence of our dynamic taint analysis,

and there may be cases where we do not respect the semantics of JavaScript. We

leave this for future work as we continue to formalize the semantics of our framework.

4.4.2 Native Functions

As we recall from Chapter 2, native functions are especially noteworthy because they

are not visible to our instrumentation framework. Their occurrence in JavaScript

code is frequent, and many of the functions that developers use are native. For

example, the indexOf function in the Array prototype is a native function that

finds the index of an element in the array, and we see it as a common occurrence

in JavaScript code. To taint native functions precisely, we employ similar methods

to that of [51] and [37], by creating models for these native functions, either by

reimplementing them in JavaScript or by summarizing their taint propagation logic

in our taint semantics. For native functions that we do not have models for, we opt

to taint imprecisely - that is, if any of the arguments are tainted, or if a method is

called on a tainted object, then the result is tainted.

59

4.4.3 Precise String Tainting

In addition, an improvement we implemented that was not previously available in

prior platform agnostic approaches for NODE.JS is the ability to taint strings precisely.

As mentioned earlier, in our taint entry, the property map MP maps character in-

dices of the string to whether they are tainted (i.e. whether they have a taint bit).

Through this, we can specify which exact bytes of the string are tainted, and use

that information going forward. This is however not the focus of this thesis, and the

work for the taint semantics that enable this feature is still an ongoing effort.

60

5

Results and Discussion

Having described our tool, NodeTaintProxy, we seek to answer the following research

questions:

RQ1: Can NodeTaintProxy detect code injection vulnerabilities in NPM pack-

ages for language versions we support?

RQ2: How does NodeTaintProxy compare to other tools in terms of precision

of tainting?

RQ3: Can NodeTaintProxy be applied to detect novel code injection vulner-

abilities in packages in the ecosystem?

5.1 Dataset

To answer the above research questions, we evaluate our framework by determining if

it is capable of detecting code injection vulnerabilities in vulnerable packages identi-

fied by prior work [51][71]. We included true negative samples as per [51] to ascertain

that our results were not superfluous, i.e. we ensure that our framework compares

with other frameworks and does not flag true negatives as false positives. Note that

61

some case studies from prior work were omitted - the printer case study is only

supported on versions of NODE.JS that have long been deprecated, and modulify is

a false positive according to the author of the package [22]. We have also omitted

command-line utilities from our evaluation, since they have no exported interfaces

in JavaScript that our tool can leverage on to do dynamic taint analysis. We also in-

cluded four new case studies not seen in prior work, showcasing recent vulnerabilities

discovered in the wild. The newly introduced vulnerabilities ranges in complexity,

from simple ACI in the ps package to complex deserialization logic involving eval

in node-serialize or js-yaml.

5.2 Results on Case Studies

In Table 5.1, we list the results for running our tool on the dataset of case studies de-

scribed above. The first column shows the name of the package under inspection, the

second column shows the version of the package that was analyzed in our framework

(where the vulnerability was known to exist), the third column details the origin

of the case study (those linked to an advisory are known vulnerabilities in NPM

that we picked as additional case studies), and the last column denotes whether the

vulnerability was detected in our framework, and details the reason if it was not.

We analyzed a total of 22 packages, with 4 original case studies plus 18 case

studies from previously published work. We detected code injection vulnerabilities

in 11 out of the 22 packages tested. With regards to the failures in detection, 2

packages timed out because of overwrapping, and 4 failed due to a lack of support

for ES6 features. In addition, 5 packages failed to run in our analysis due to known

bugs in our infrastructure that can be fixed, and we believe that these bugs do not

detract from the conceptual ideas of our tool. One such bug which resulted in 3 out of

5 of the failures is a bug in how we handle assignments in growl, where assignments

to the properties of the exports object would be mistakenly resolved to undefined,

62

hence crashing the program.

5.3 Discussion

Below, we will elaborate in detail the results of our evaluation.

5.3.1 Successful Detection

For packages written in ES5.1 and below, we were largely successful in instrumenting

and finding the vulnerabilities, even if the vulnerability was complex in nature. For

example, node-serialize suffers from a code-injection vulnerability that happens

because the library attempts to call eval on a function that was serialized. Thus, the

taint propagation would have to work through the complex deserialization logic in

order to reach the eval sink. It is unclear from reading the source code whether any

generic string would reach the sink, but our analysis clearly shows that a serialized

string would always be evaluated. We also note that out of the 4 new case studies

introduced, we detected code injection vulnerabilities for 3 out of 4 of them, with

the last case study failing because of overwrapping.

We also support a good amount of case studies used in prior work for the language

versions we support. In particular, 14 case studies out of the 18 used in prior work

are packages written in ES5.1 and below, and we support all but 6 case studies from

this selection. We attribute 5 of the failures to known bugs that can be fixed, while

the last failure was found to have failed due to overwrapping.

RQ1: We believe NodeTaintProxy sufficiently detects code injection

vulnerabilities with respect to the language versions it supports at this

time.

Finally, unlike previous platform agnostic approaches which were coarse-grained

[37][51], our approach supports byte level tainting. For example, in our analysis of the

ps case study, we found that the indices tainted in the argument to the call to exec

63

were precisely the indices an attacker could control, whereas previous approaches

could only mark the entire argument as tainted.

RQ2: NodeTaintProxy improves upon prior work by specifying an

architecture where byte level tainting can be supported in a platform

agnostic approach and we show that byte level tainting has been achieved.

5.3.2 Unsupported Operations

Unfortunately, support for ES6 and above is needed to run most modern NPM

packages. Jalangi2’s ES6 support is lacking, and a variable defined using let or

const would not be able to run in our framework and would be undefined, even if

they were the only ES6 features that were used.

The presence of modern JavaScript features for packages in NPM is growing,

and even a single line containing newer JavaScript features would prevent us from

analyzing the package. An example is the os-uptime package, which has a single

line which uses the const declarator and hence, Jalangi2 was not able to run the

package due to a missing declaration. Other packages that use more ES6 features

would also fail to run, as we would expect. We will discuss methods to resolve this

in future work in Chapter 6.

5.3.3 Overwrapping

As discussed in Chapter 4, we wrap every primitive that we encounter and store

their reference in the wrapper map. This however means that the overhead for

each operation grows larger with the size of the package. Large packages such as

js-yaml with about 4000 lines of code failed to load, since each operation in the

package initialization is also wrapped, and the overhead of looking up unwrapped

values in the wrapper map for these wrapped objects grows linearly with the number

of operations performed. mongoosify, a small package with around 200 lines of

64

code, depends on lodash which has 12000 lines of code, will also fail to load on our

framework as well.

Note that we have made the above decision to wrap all primitives to ensure

that our semantics for wrapping work even in large and complicated code bases. In

Chapter 6, we will discuss alternative strategies to lower the overhead of wrapping.

While we recognize the limitations of our infrastructure, we see promise. In par-

ticular, we have evaluated our tool’s capability in detecting code injection vulnerabil-

ities in packages written in ES5.1. In Section 5.4, we broaden the scope and outline

a feasibility study to evaluate our tool against novel code injection vulnerabilities in

the wild.

5.4 Feasibility Study

Having looked at how NodeTaintProxy performs on known vulnerabilities, we want

to evaluate the tool’s performance on NPM packages on a large scale. However,

our current implementation does not support this at this point of time. We first

look at the difficulties in applying our method directly on the ecosystem of pack-

ages. We then propose a study to determine the prevalence of novel code injection

vulnerabilities in the wild, and ascertain if our framework is capable of detecting the

vulnerabilities. We outline how we collected the data and found the vulnerabilities,

and show our results from the analysis of over 18000 packages. We then conclude

that NodeTaintProxy is fundamentally able to detect novel code injection vulnera-

bilities, with it detecting 2 out of the 3 vulnerabilities for the JavaScript versions

that it currently supports.

5.4.1 Challenges for Large Scale Analysis of Packages

There are challenges inherent in the NPM ecosystem that prevents our current im-

plementation from being applied on packages in the wild. Below, we list two of the

65

biggest blockers that we have encountered in our analysis.

1. Diversity of Packages. NPM packages come in many different flavors,

not all of which are suitable for our framework. To give an example, the

watch-cli-only package only runs from the command line. Other packages re-

quire transpilation to ES5.1 before being compatible with our framework. Most

notably, packages that use newer features of JavaScript (such as os-uptime

which is written for ES6), CoffeeScript (like refix [75]) or even TypeScript

(like haversine-position [74]) would have to be compiled into a compatible

version of JavaScript before our tooling would work. Another issue is that some

packages run only on the browser and hence do not work in our framework.

2. Lack of Clear Interfaces. As noted in prior work in studying NPM packages,

there are no clear interfaces on how exactly to interact with the package that

we wish to target [44]. Documentation may be lacking for some packages, and

only a small fraction of packages contain any kind of testing [33] which we

might hope to glean potential usage patterns from.

Without a proper harness to solve the above issues, we will not be able to conduct

a study at a large scale. However, before doing that, we wish to first ascertain that

code injection vulnerabilities are still prevalent in this ecosystem. While previous

studies noted the prolific use of APIs that cause code injection attacks [71], they did

not verify that code injection attacks exist for a large portion of them. We proceeded

with a similar study to see if such code injection vulnerabilities are prevalent. We

verify the vulnerabilities manually and for truly vulnerable packages, and we check

to see whether the vulnerability could potentially be detected by our framework.

66

5.4.2 Methodology of Feasibility Study

To achieve this, we employed a similar methodology to [71]. We first retrieved a

dataset of over 844743 packages from an updated list of git repositories known to be

associated to NPM packages [30]. From there, we pulled a subset of the dataset. In

particular, we cloned the first 18031 packages, which is about 2% of the dataset. A

number of packages could not be retrieved this way as their git repository link was

private, down, or non-existent. We speculate that packages without a git repository

tied to it would be as prone, if not more prone to such vulnerabilities.

The reason why we chose to pull repositories from git was because of the potential

dangers of installing unknown NPM packages, as noted in [44]. An improvement we

could have made to the analysis was to order the packages by use and pulling them

starting from the packages with the highest weekly downloads.

From there, we performed a regular expression based search to find uses of the

exported functions in the child_process module. This search provided decent fi-

delity for the output results, since the child_process module is often misused and

abused, as we have seen in [71]. However, there were a large number of false positives

that occurred because of the usage of the child_process module to run test cases,

and in production this module would not be imported at runtime. We manually

triaged each alert to see if a code injection vulnerability could possibly exist, and for

those that we found were vulnerable, we developed proof of concepts for each of the

vulnerable applications. Note that this triaging process is extremely time consuming

and error-prone, and we do not believe that we have captured all code injection vul-

nerabilities in the dataset that we have pulled. Through the process of this triaging,

we also see the potential value of being able to automatically check whether code

injection exists in a package using our tool.

67

5.4.3 Analysis of Feasibility Study Vulnerabilities

Table 5.2 below summarizes the code injection vulnerabilities found and the details of

each vulnerability. The first column shows the name of the package under inspection,

the second column shows the version in which we found the vulnerability (which is

the latest version at the time the thesis was written), the third column details the

vulnerability, and the last column denotes whether the vulnerability was detected in

our framework, and details the reason if it was not.

In total, we found 7 previously unpublished code injection vulnerabilities. For the

versions of JavaScript we support, we detect 2 out of 3 of the packages containing

the vulnerability. For the last package, onion-oled-js, an under-specified sink

policy did not support the structure of calls to apply and call that was used to

bootstrap promises, hence it could not detect that a promisified function reached

the sink. We are however aware of this issue and we believe this is an isolated bug

in the sink policy and does not detract from our overall approach. We believe that

other vulnerabilities not detected by our infrastructure can be detected with some

modifications to support other versions of JavaScript, as noted in the challenges

earlier. This sends a strong signal to us to continue our work - we see that manual

triaging of alerts of decent fidelity take time and the high fidelity alerts provided

by our framework would cut down (if not eliminate completely) the manual labor

needed to process the vulnerabilities.

RQ3: NodeTaintProxy was successful in detecting novel code injection

vulnerabilities found in NPM for versions of JavaScript that we currently

support, showing promise on its ability to perform in a large scale study.

5.4.4 Insights from Feasibility Study

In our analysis of the vulnerabilities, we noticed that the fixes for these packages

are often simple, since the command injection in each case is quite trivial. In many

68

cases, these applications simply run a command, passing in arguments provided

to the binary they wish to run. However, because they call exec or execSync,

command injection can be done by adding special characters that allow them to

sequence or inject commands (like ` or ;) to the arguments passed to the function.

This can easily be fixed by using a much safer function, like spawn or execFile of

the child_process module, which only runs the particular binary file specified and

hence are not amenable to command injection like the former vulnerable functions.

Unfortunately, despite the easy fix, unreported code injection vulnerabilities are

still common in the NPM ecosystem, with potentially many more to be found. With

the current state of our tool, we are able to detect vulnerabilities for packages that

were written in ES5.1 and below. To that end, we believe that pursuing a large scale

study on the ecosystem of NPM packages would be fruitful. We will elaborate more

on the ways to conduct a large scale study in the next part of our thesis, where we

discuss limitations and future work of our tool in Chapter 6.

5.5 Threats to Validity

Below, we list the threats to validity of our results.

1. Limited real world package analysis. While we can get results on a selected

subset of real world packages as seen in prior work, this might not hold for

the majority of packages in NPM. In particular, we have seen large packages

in the ecosystem, as well as packages that use newer features of JavaScript

that are currently not supported by our instrumentation framework. We have

attempted to resolve this by introducing new case studies not looked at by prior

work, plus found new vulnerabilities in our feasibility study. We showed that

these new vulnerabilities can be detected in on our infrastructure. We believe

that above limitations of our current approach can be circumvented, and we

69

outline a plan to conduct large scale studies on packages in the ecosystem -

details of this can be found in Chapter 6.

2. Overtainting. It might be entirely possible that the positive results were

caused by overtainting in the system, and hence we would always signal that

the sink was reached. This would cause false positives to show up in our

analysis as the framework might flag packages as vulnerable when they are

not. For example, an imprecise policy might flag a value as attacker controlled

when the attacker has no way in practice of controlling it. We put in place the

following measures to reduce the likelihood of overtainting. First, for each case

study, whenever possible, we ran the function using both tainted and untainted

inputs and ensured that in the latter, we did not signal that a tainted input

reached the sink. Second, if there was more than one operation required to

run the exploit for a particular case study, we put in place tests to check for

overtainting and ensured that only the parts we expect to be tainted are tainted

after each operation in the case study. Third, we utilized benign packages such

as node-wos as true negatives as part of our case study to ensure we did not

flag every call to exec as malicious. Finally, we implemented and passed over

300 tests to ensure correctness of taint propagation, with each testing taint

propagation for different operations in JavaScript.

70

Package Version Sink Origin of Case Study Detectable by Node-
TaintProxy?

ps 0.0.2 exec Advisory: [1] Yes.
cryo 0.0.2 eval Advisory: [11] Yes.

js-yaml 3.13.0 eval Advisory: [12] No. Due to over-
wrapping.

node-serialize 0.0.4 eval Advisory: [14] Yes.
gm 1.20.0 exec From [71]. No. Uses ES6 fea-

tures.
fish 0.0.0 exec From [71]. Yes.

git2json 0.0.1 exec From [71]. Yes.
growl 1.9.2 exec From [71]. No. Unsupported

setting of property of
export.

chook-growl-reporter 0.0.1 exec From [71]. No. Depends on
growl. Unsupported
setting of property of
export.

mqtt-growl 0.1.0 exec From [71]. No. Depends on
growl. Unsupported
setting of property of
export.

m-log 0.0.1 eval From [71]. No. Dependency
uses unsupported as-
signment operator.

mixin-pro 0.6.6 eval From [71]. Yes.
mol-proto 0.0.15 eval From [71]. No. Unsupported

setting of property of
export.

mongoosify 0.0.3 eval From [71]. No. Due to over-
wrapping.

node-os-utils 1.0.7 exec From [51]. No. Uses ES6 fea-
tures.

node-wos 0.2.3 execSync From [51] Yes True negative.
osenv 0.1.5 execSync From [51] Yes True negative.

office-converter 1.0.2 exec From [51]. Yes.
os-uptime 2.0.1 exec From [51]. No. Uses ES6 fea-

tures.
pidusage 1.1.4 exec From [51]. Yes.

pomelo-monitor 0.3.7 exec From [51]. Yes.
system-locale 0.1.0 execFileSync From [51]. No. True negative.

Uses ES6 features.

Table 5.1: NodeTaintProxy Evaluation Results

71

NPM Package Version Vulnerability Details Detectable by NodeTaint-
Proxy?

nbin [8] 0.0.4 Use of exec allows for com-
mand injection via args

parameter of the exported
exec function

Yes

wincred [25] 1.0.2 Use of exec allows for com-
mand injection via the ex-
ported run function

No, uses ES6 features.

picoTTS [18] 0.1.1 Use of exec allows for com-
mand injection via exported
say function

Yes

remark [20] 0.1.0 Use of exec allows for
command injection via
filepath parameter of the
exported remove function

No, uses ES6 features.

onion-oled-js [16] 0.0.2 Use of exec allows for com-
mand injection via exec in
multiple exported functions

No, uses apply and call to
implement Promises.

node-ts-ocr [10] 1.0.15 Use of exec allows for
command injection via the
options parameter in the
invokePdfToTiff function

No, uses TypeScript.

ffmpegdotjs [7] 0.0.4 Use of exec allows for com-
mand injection in multiple
exported functions

No, uses ES6 features.

Table 5.2: Code Injection Vulnerabilities Found in Feasibility Study

72

6

Limitations and Future Work

We break down the current limitations of our framework and see how we can address

these issues in future work.

6.1 Overwrapping of Primitives

As mentioned in Chapter 5, overwrapping of primitives is an issue when running

large packages. To illustrate the issue, we refer to the code snippet in Listing 6.1.

1 f o r (var i = 0 ; i < n ; i++) {
2 a = a + "a" ;
3 }

Listing 6.1: Simple For Loop For Illustration of Overwrapping

First, recall that primitives are wrapped so that they have a unique identifier

in our taint map MT . Suppose that none of the above variables in Listing 6.1 are

tainted. Therefore, none of these variables have a mapping in MT and therefore,

these variables do not actually have to be wrapped! Currently, in our infrastructure,

every time a literal such as ‘a’ is encountered, we wrap it. We also wrap the result

of the concatenation of the variable a with the wrapped literal ‘a’. Furthermore,

73

each time i is incremented, a new primitive is wrapped (representing the result of

the increment). In the example in Listing 6.1, every iteration of the loop creates 3

wrapped primitives, for a total of 3n wrapped primitives at the end of the loop which

are not necessary.

This incurs performance penalties for each operation, since each operation has to

unwrap the wrapped object (which is a lookup on the wrapper map MW , and with

more keys in the map, lookup times would be longer). Here, we see that the number

of wrapped primitives grows linear in the number of operations that the program

has to execute, which would be a problem if the instrumented library is large. This

implementation is unoptimized but simplifies the wrapper semantics, since we can

simply treat all primitives as wrapped.

One solution to this is to optimize the wrapping semantics by wrapping on de-

mand. Variables are wrapped if they are involved in an operation with a tainted

variable, and all wrapped variables which are not tainted at the end of each oper-

ation are discarded. This would significantly reduce the overhead. We foresee that

this optimization would alleviate problems in our framework caused by the large size

of the underlying packages.

6.2 Better Language Support

As noted in Chapter 5, we are currently not able to run code which uses features from

newer versions of JavaScript. From our feasibility study in Section 5.4, 3 out of 7 of

the vulnerabilities found were in packages written in newer versions of JavaScript. If

we wish to explore the space of NPM packages, better support for newer JavaScript

versions must be implemented.

This can happen in multiple ways, and we elaborate more on each of the alter-

natives below:

74

1. Transpilation. Babel [2] is a commonly used transpiler for compiling newer

versions of JavaScript to older ones. Traditionally, it was implemented to help

browsers to continue to render websites even without support for the latest

version of JavaScript [27]. Unfortunately, not all features can be faithfully

replicated during the transpilation. For example, let and const are transpiled

to var, which means that immutability in the const declaration is not guaran-

teed, and the original semantics may be altered [63]. If we adopt this approach,

the original program might not execute correctly for some cases, which might

lead to false positives or negatives, but we would largely be compatible with

new code with little to no changes in our infrastructure.

2. Modifying Jalangi2 to support newer JavaScript features. Jalangi2

can be modified and updated to support newer JavaScript features. Some

research groups are moving in this direction - for example, the ExpoSE frame-

work uses a custom Jalangi2 framework which utilizes Babel underneath the

hood to support newer versions of JavaScript [55], and a similar approach can

be adopted in our infrastructure as well. However, such an update requires

significant changes to the source code of the framework and might prove to be

a large engineering feat.

3. Utilizing a different instrumentation framework. More promisingly, new

virtual machine runtimes supporting NODE.JS that bake in instrumentation

tooling are being open sourced. In particular, the GraalVM together with

the Truffle language for instrumentation looks to be promising for use as the

underlying instrumentation framework and runtime backend for dynamic taint

analysis [53], but it is still largely untested in practice.

Currently, transpilation seems to be the most promising direction for future work,

since it allows for future versions of JavaScript to be supported, while minimizing

75

the changes made to our infrastructure. Through this, we can execute and test the

majority of the NPM packages not just in the present, but also in the future, as

long as we are willing to tolerate some errors caused by transpilation. In the future,

alternative instrumentation frameworks (like Truffle for GraalVM) can be explored

if transpilation raises too many errors.

6.3 Large Scale Analysis

In our current evaluation, we only looked at a handful of NPM packages that we know

have a code injection vulnerability. We have shown that our framework succeeded in

detecting the vulnerabilities, but we wish to extend this method to a larger setting

to find new code injection vulnerabilities in the NPM ecosystem. However, such

an analysis requires the language issue mentioned above to be solved, as well the

creation of a test harness. Below, we will explore potential ideas for the test harness

here.

An approach adopted by Staicu et al. used existing test cases of the package

being evaluated to perform dynamic taint analysis [72], but not all packages come

with test cases, and we speculate that those packages that do not have test cases

are more likely to showcase such vulnerabilities. Automatic test case generation can

also be explored. For example, we can try to infer the types of the arguments for an

exported function using techniques from JSNice [64] and perform concolic execution

to get better coverage in the testing, similar to that of [56] and [66]. This would pave

the way for automatic code injection vulnerability detection that can be implemented

in a repository, preventing such vulnerabilities from showing up in the ecosystem in

the future.

76

7

Conclusion

In summary, we have shown that it is possible to build a platform agnostic frame-

work, with a novel way of propagating taint in the face of tainted dynamic code

generation. This is a particularly important contribution, especially in the backdrop

of the ever increasingly popular NODE.JS framework. Looking at the existing NPM

ecosystem, packages are often implicitly trusted by developers, even though few safe-

guards exists, and we see that there needs to be a way for analysts to do an offline

analysis to ensure that these packages are not vulnerable to code injection attacks,

and our tool, NodeTaintProxy, is there to help them achieve this goal.

Even though the ECMAScript standard is complex, inspired by [37], we developed

a way of performing dynamic taint analysis that deferred execution to the JavaScript

engine, thus minimizing our own need to reason about these semantics. We show our

transformed semantics for each operation was equivalent to direct execution under

the JavaScript engine, even in the presence of type coercion. We improved upon

prior work by developing a platform agnostic, dynamic taint analysis framework

that was architecturally sound. We also added support for byte-level tainting, and

we do so by supporting auxiliary data structures in our taint layer. More generally,

77

other data structures for storing taint information can also be supported, simply

by swapping out the current taint layer with a different taint layer supplied by the

analyst. This can be further augmented with taint propagation rules for that data

structure. Our plug and play architecture for dynamic taint tracking allows for

different modules to be used - new taint policies can be added seamlessly; even the

underlying instrumentation framework can be changed, provided the set of interfaces

that we require are correctly defined. This was something that could not be achieved

in previous platform agnostic approaches in JavaScript dynamic taint analysis.

We also noted that previous platform independent approaches treated eval as a

sink with no way of propagating taint further, but we improved upon that with a way

of tainting written variables in the case where eval was not a sink, particularly when

eval is called with a tainted argument. We were inspired my Mystique’s approach

[36] and adapted their approach to propagate taint via static analysis, and we achieve

that even without access to the underlying JavaScript internals. We do this via

program rewriting to make use of a shared context so that the instrumentation layer

can push wrapped variables back into the local scope, and we detail the algorithms

to perform this rewriting.

Our tool was successful in finding vulnerabilities for packages written in ES5.1

that were used in the evaluation of prior work, and our evaluation includes novel case

studies that were added to the dataset. Furthermore, our tool does not flag benign

packages that were studied in prior work, and was even able to keep track of the

exact tainted indices of a given tainted string, provided that no imprecise tainting

policy was applied. This is an improvement over previous coarse-grained approaches

in platform agnostic dynamic taint tracking for JavaScript.

We have yet to see a large scale analysis of code injection vulnerabilities for

packages in the NPM ecosystem, but our feasibility study showed that many such

vulnerabilities still exist. By implementing a test harness and augmenting our tool

78

with support for newer JavaScript features, we can run our tool on all packages in

the NPM repository and find many new code injection vulnerabilities automatically.

This will be the next step in our research.

To that end, we hope that the framework would eventually be the de facto stan-

dard for dynamic taint analysis in JavaScript, and that such a tool would be used by

others to study and uncover new vulnerabilities in the wild, leading to a much safer

JavaScript ecosystem.

79

Bibliography

[1] “Arbitrary Command Injection in ps | Snyk.” [Online]. Available: https:
//snyk.io/vuln/SNYK-JS-PS-72307.” [Accessed 2020-05-07].

[2] “Babel · The compiler for next generation JavaScript,” library Catalog:
babeljs.io. [Online]. Available: https://babeljs.io/. [Accessed 2020-05-07].

[3] “Creating and publishing scoped public packages | npm
Documentation.” [Online]. Available: https://docs.npmjs.com/
creating-and-publishing-scoped-public-packages.” [Accessed 2020-05-02].

[4] “CWE - CWE-94: Improper Control of Generation of Code (’Code Injection’)
(4.0).” [Online]. Available: https://cwe.mitre.org/data/definitions/94.html.”
[Accessed 2020-05-07].

[5] “CWE - CWE-95: Improper Neutralization of Directives in Dynamically
Evaluated Code (’Eval Injection’) (4.0).” [Online]. Available: https:
//cwe.mitre.org/data/definitions/95.html.” [Accessed 2020-05-07].

[6] “Esprima.” [Online]. Available: https://esprima.org/.” [Accessed 2020-05-08].

[7] “ffmpegdotjs,” library Catalog: www.npmjs.com. [Online]. Available: https:
//www.npmjs.com/package/ffmpegdotjs. [Accessed 2020-05-07].

[8] “nbin,” library Catalog: www.npmjs.com. [Online]. Available: https:
//www.npmjs.com/package/nbin. [Accessed 2020-05-07].

[9] “node-serialize,” library Catalog: www.npmjs.com. [Online]. Available:
https://www.npmjs.com/package/node-serialize. [Accessed 2020-05-07].

[10] “node-ts-ocr,” library Catalog: www.npmjs.com. [Online]. Available: https:
//www.npmjs.com/package/node-ts-ocr. [Accessed 2020-05-07].

[11] “npm advisory for cryo,” library Catalog: www.npmjs.com. [Online]. Available:
https://www.npmjs.com/advisories/690. [Accessed 2020-05-07].

80

https://snyk.io/vuln/SNYK-JS-PS-72307
https://snyk.io/vuln/SNYK-JS-PS-72307
https://babeljs.io/
https://docs.npmjs.com/creating-and-publishing-scoped-public-packages
https://docs.npmjs.com/creating-and-publishing-scoped-public-packages
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/95.html
https://cwe.mitre.org/data/definitions/95.html
https://esprima.org/
https://www.npmjs.com/package/ffmpegdotjs
https://www.npmjs.com/package/ffmpegdotjs
https://www.npmjs.com/package/nbin
https://www.npmjs.com/package/nbin
https://www.npmjs.com/package/node-serialize
https://www.npmjs.com/package/node-ts-ocr
https://www.npmjs.com/package/node-ts-ocr
https://www.npmjs.com/advisories/690

[12] “npm advisory for js-yaml,” library Catalog: www.npmjs.com. [Online].
Available: https://www.npmjs.com/advisories/813. [Accessed 2020-05-07].

[13] “npm advisory for node-serialize,” library Catalog: www.npmjs.com. [Online].
Available: https://www.npmjs.com/advisories/311. [Accessed 2020-05-07].

[14] “npm advsiory for node-serialize,” library Catalog: www.npmjs.com. [Online].
Available: https://www.npmjs.com/advisories/311. [Accessed 2020-05-07].

[15] “npm/npm,” library Catalog: github.com. [Online]. Available: https:
//github.com/npm/npm. [Accessed 2020-05-06].

[16] “onion-oled-js,” library Catalog: www.npmjs.com. [Online]. Available:
https://www.npmjs.com/package/onion-oled-js. [Accessed 2020-05-07].

[17] “OWASP Top Ten Web Application Security Risks | OWASP,” library Catalog:
owasp.org. [Online]. Available: https://owasp.org/www-project-top-ten/.
[Accessed 2020-05-07].

[18] “picotts,” library Catalog: www.npmjs.com. [Online]. Available: https:
//www.npmjs.com/package/picotts. [Accessed 2020-05-07].

[19] “Remote Code Execution · A Roadmap for Node.js Security.” [On-
line]. Available: https://nodesecroadmap.fyi/chapter-1/threat-RCE.html.”
[Accessed 2020-05-07].

[20] “@sapper-dragon/remark,” library Catalog: www.npmjs.com. [Online]. Avail-
able: https://www.npmjs.com/package/@sapper-dragon/remark. [Accessed
2020-05-07].

[21] “Stack Overflow Developer Survey 2019,” li-
brary Catalog: insights.stackoverflow.com. [Online]. Avail-
able: https://insights.stackoverflow.com/survey/2019/?utm source=
social-share&utm medium=social&utm campaign=dev-survey-2019. [Accessed
2020-05-07].

[22] “Unsafe use of eval · Issue #2 · matthewkastor/modulify,” library Catalog:
github.com. [Online]. Available: https://github.com/matthewkastor/modulify/
issues/2. [Accessed 2020-05-07].

[23] “VM (Executing JavaScript) | Node.js v14.2.0 Documentation.” [Online].
Available: https://nodejs.org/api/vm.html.” [Accessed 2020-05-08].

81

https://www.npmjs.com/advisories/813
https://www.npmjs.com/advisories/311
https://www.npmjs.com/advisories/311
https://github.com/npm/npm
https://github.com/npm/npm
https://www.npmjs.com/package/onion-oled-js
https://owasp.org/www-project-top-ten/
https://www.npmjs.com/package/picotts
https://www.npmjs.com/package/picotts
https://nodesecroadmap.fyi/chapter-1/threat-RCE.html
https://www.npmjs.com/package/@sapper-dragon/remark
https://insights.stackoverflow.com/survey/2019/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2019
https://insights.stackoverflow.com/survey/2019/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2019
https://github.com/matthewkastor/modulify/issues/2
https://github.com/matthewkastor/modulify/issues/2
https://nodejs.org/api/vm.html

[24] “vm2,” library Catalog: www.npmjs.com. [Online]. Available: https:
//www.npmjs.com/package/vm2. [Accessed 2020-05-08].

[25] “wincred,” library Catalog: www.npmjs.com. [Online]. Available: https:
//www.npmjs.com/package/wincred. [Accessed 2020-05-07].

[26] “Netscape and Sun announce javascript, the open, cross-platform object
scripting language for enterprise networks and the internet,” Dec. 1995.
[Online]. Available: https://web.archive.org/web/20070916144913/http://wp.
netscape.com/newsref/pr/newsrelease67.html. [Accessed 2020-05-02].

[27] “Transpiling ES6,” Sep. 2016, library Catalog: css-tricks.com. [Online].
Available: https://css-tricks.com/transpiling-es6/. [Accessed 2020-05-07].

[28] “Attitudes to security in the javascript community,” https://medium.com/
npm-inc/security-in-the-js-community-4bac032e553b, Apr 2018.

[29] “estools/escope,” Apr. 2020, original-date: 2012-09-12T22:48:51Z. [Online].
Available: https://github.com/estools/escope. [Accessed 2020-05-08].

[30] “nice-registry/all-the-package-repos,” May 2020, original-date: 2016-
12-04T21:10:04Z. [Online]. Available: https://github.com/nice-registry/
all-the-package-repos. [Accessed 2020-05-07].

[31] “Samsung/jalangi2,” Apr. 2020, original-date: 2014-11-26T11:49:28Z. [Online].
Available: https://github.com/Samsung/jalangi2. [Accessed 2020-05-06].

[32] “tc39/test262,” May 2020, original-date: 2014-01-22T18:20:05Z. [Online].
Available: https://github.com/tc39/test262. [Accessed 2020-05-13].

[33] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab, “Why do
developers use trivial packages? an empirical case study on npm,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2017. Paderborn, Germany: ACM Press, 2017, pp. 385–395.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=3106237.3106267.
[Accessed 2020-05-06].

[34] E. Andreasen, Liang Gong, A. Møller, M. Pradel, M. Selakovic, Koushik
Sen, and R.-A. Staicu, “A Survey of Dynamic Analysis and Test
Generation for JavaScript,” ACM Computing Surveys, vol. 50, no. 5, pp.
66:1–66:36, Nov. 2017, publisher: Association for Computing Machinery.
[Online]. Available: http://search.ebscohost.com/login.aspx?direct=true&db=
buh&AN=125367040&site=ehost-live. [Accessed 2020-05-07].

82

https://www.npmjs.com/package/vm2
https://www.npmjs.com/package/vm2
https://www.npmjs.com/package/wincred
https://www.npmjs.com/package/wincred
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://css-tricks.com/transpiling-es6/
https://medium.com/npm-inc/security-in-the-js-community-4bac032e553b
https://medium.com/npm-inc/security-in-the-js-community-4bac032e553b
https://github.com/estools/escope
https://github.com/nice-registry/all-the-package-repos
https://github.com/nice-registry/all-the-package-repos
https://github.com/Samsung/jalangi2
https://github.com/tc39/test262
http://dl.acm.org/citation.cfm?doid=3106237.3106267
http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=125367040&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=125367040&site=ehost-live

[35] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security
enforcement using dynamic data flow analysis,” in Proceedings of the 15th
ACM conference on Computer and communications security - CCS ’08.
Alexandria, Virginia, USA: ACM Press, 2008, p. 39. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1455770.1455778. [Accessed 2020-05-
05].

[36] Q. Chen and A. Kapravelos, “Mystique: Uncovering Information Leakage from
Browser Extensions,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. Toronto Canada: ACM, Jan. 2018,
pp. 1687–1700. [Online]. Available: https://dl.acm.org/doi/10.1145/3243734.
3243823. [Accessed 2020-05-02].

[37] A. Chudnov and D. A. Naumann, “Inlined Information Flow Monitoring for
JavaScript,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security - CCS ’15. Denver, Colorado, USA: ACM
Press, 2015, pp. 629–643. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2810103.2813684. [Accessed 2020-03-18].

[38] C. Cimpanu, “Hacker backdoors popular javascript li-
brary to steal bitcoin funds,” https://www.zdnet.com/article/
hacker-backdoors-popular-javascript-library-to-steal-bitcoin-funds/, Nov
2018.

[39] T. Claburn, “This typosquatting attack on npm went undetected for 2 weeks,”
Aug 2017, library Catalog: www.theregister.co.uk. [Online]. Available: https:
//www.theregister.co.uk/2017/08/02/typosquatting npm/. [Accessed 2020-05-
02].

[40] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens, “FlowFox: a web
browser with flexible and precise information flow control,” in Proceedings of
the 2012 ACM conference on Computer and communications security - CCS ’12.
Raleigh, North Carolina, USA: ACM Press, 2012, p. 748. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2382196.2382275. [Accessed 2020-03-18].

[41] M. L. V. de Vanter, C. Seaton, M. Haupt, C. Humer, and T. Würthinger,
“Fast, flexible, polyglot instrumentation support for debuggers and other
tools,” CoRR, vol. abs/1803.10201, 2018. [Online]. Available: http:
//arxiv.org/abs/1803.10201.

[42] Ecma International, “Standard ECMA-262-archive.” [Online].
Available: https://www.ecma-international.org/publications/standards/
Ecma-262-arch.htm.” [Accessed 2020-05-02].

83

http://portal.acm.org/citation.cfm?doid=1455770.1455778
https://dl.acm.org/doi/10.1145/3243734.3243823
https://dl.acm.org/doi/10.1145/3243734.3243823
http://dl.acm.org/citation.cfm?doid=2810103.2813684
http://dl.acm.org/citation.cfm?doid=2810103.2813684
https://www.zdnet.com/article/hacker-backdoors-popular-javascript-library-to-steal-bitcoin-funds/
https://www.zdnet.com/article/hacker-backdoors-popular-javascript-library-to-steal-bitcoin-funds/
https://www.theregister.co.uk/2017/08/02/typosquatting_npm/
https://www.theregister.co.uk/2017/08/02/typosquatting_npm/
http://dl.acm.org/citation.cfm?doid=2382196.2382275
http://arxiv.org/abs/1803.10201
http://arxiv.org/abs/1803.10201
https://www.ecma-international.org/publications/standards/Ecma-262-arch.htm
https://www.ecma-international.org/publications/standards/Ecma-262-arch.htm

[43] ——, “ECMAScript 2019 Language Specification,” Jun. 2019. [Online].
Available: https://www.ecma-international.org/ecma-262. [Accessed 2020-05-
02].

[44] L. Gong, “Dynamic analysis for javascript code,” Ph.D. dissertation,
University of California, Berkeley, USA, 2018. [Online]. Available: http:
//www.escholarship.org/uc/item/7n30n4kd.

[45] D. Grander and L. Tal, “A Post-Mortem of the Malicious event-
stream backdoor | Snyk,” Dec. 2018, library Catalog: snyk.io
Section: Vulnerabilities. [Online]. Available: https://snyk.io/blog/
a-post-mortem-of-the-malicious-event-stream-backdoor/. [Accessed 2020-05-
04].

[46] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “JSFlow: tracking
information flow in JavaScript and its APIs,” in Proceedings of the 29th
Annual ACM Symposium on Applied Computing - SAC ’14. Gyeongju,
Republic of Korea: ACM Press, 2014, pp. 1663–1671. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2554850.2554909. [Accessed 2020-05-06].

[47] D. Hedin and A. Sabelfeld, “Web Application Security Using JSFlow,” in
2015 17th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC). Timisoara, Romania: IEEE, Sep. 2015,
pp. 16–19. [Online]. Available: http://ieeexplore.ieee.org/document/7426055/.
[Accessed 2020-05-06].

[48] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “Dta++: Dynamic
taint analysis with targeted control-flow propagation.” in NDSS. The Internet
Society, 2011. [Online]. Available: http://dblp.uni-trier.de/db/conf/ndss/
ndss2011.html#KangMPS11.

[49] P. Kannan, T. H. Austin, M. Stamp, T. Disney, and C. Flanagan, “Virtual
values for taint and information flow analysis,” 2016.

[50] C. Karande, Securing node applications : protecting against OWASP Top 10
risks, first edition. ed. Sebastopol, CA: O’Reilly Media.

[51] R. Karim, F. Tip, A. Sochurkova, and K. Sen, “Platform-Independent Dynamic
Taint Analysis for JavaScript,” IEEE Transactions on Software Engineering, pp.
1–1, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8511058/.
[Accessed 2020-05-01].

84

https://www.ecma-international.org/ecma-262
http://www.escholarship.org/uc/item/7n30n4kd
http://www.escholarship.org/uc/item/7n30n4kd
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
http://dl.acm.org/citation.cfm?doid=2554850.2554909
http://ieeexplore.ieee.org/document/7426055/
http://dblp.uni-trier.de/db/conf/ndss/ndss2011.html#KangMPS11
http://dblp.uni-trier.de/db/conf/ndss/ndss2011.html#KangMPS11
https://ieeexplore.ieee.org/document/8511058/

[52] M. Keil, S. Guria, A. Schlegel, M. Geffken, and P. Thiemann, “Transparent
object proxies for javascript,” 04 2015.

[53] J. Kreindl, D. Bonetta, and H. Mössenböck, “Towards efficient, multi-
language dynamic taint analysis,” in Proceedings of the 16th ACM SIGPLAN
International Conference on Managed Programming Languages and Runtimes,
ser. MPLR 2019. Athens, Greece: Association for Computing Machinery, Oct.
2019, pp. 85–94. [Online]. Available: https://doi.org/10.1145/3357390.3361028.
[Accessed 2020-05-05].

[54] S. Lekies, B. Stock, and M. Johns, “25 million flows later: large-
scale detection of DOM-based XSS,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security - CCS ’13.
Berlin, Germany: ACM Press, 2013, pp. 1193–1204. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2508859.2516703. [Accessed 2020-05-05].

[55] B. Loring, “ExpoSEJS/jalangi2,” Jul. 2019, original-date: 2018-05-
20T11:33:05Z. [Online]. Available: https://github.com/ExpoSEJS/jalangi2.
[Accessed 2020-05-08].

[56] B. Loring, D. Mitchell, and J. Kinder, “ExpoSE: practical symbolic execution
of standalone JavaScript,” in Proceedings of the 24th ACM SIGSOFT
International SPIN Symposium on Model Checking of Software - SPIN 2017.
Santa Barbara, CA, USA: ACM Press, 2017, pp. 196–199. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3092282.3092295. [Accessed 2020-05-06].

[57] J. Ming, “Pipelined symbolic taint analysis,” 2016. [Online]. Available:
http://search.proquest.com/docview/1847568155/.

[58] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross-site
scripting prevention with dynamic data tainting and static analysis,” in In Pro-
ceeding of the Network and Distributed System Security Symposium (NDSS’07,
2007.

[59] J. Newsome, S. McCamant, and D. Song, “Measuring channel capacity
to distinguish undue influence,” in Proceedings of the ACM SIGPLAN
Fourth Workshop on Programming Languages and Analysis for Security -
PLAS ’09. Dublin, Ireland: ACM Press, 2009, p. 73. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1554339.1554349. [Accessed 2020-05-
05].

[60] J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity

85

https://doi.org/10.1145/3357390.3361028
http://dl.acm.org/citation.cfm?doid=2508859.2516703
https://github.com/ExpoSEJS/jalangi2
http://dl.acm.org/citation.cfm?doid=3092282.3092295
http://search.proquest.com/docview/1847568155/
http://portal.acm.org/citation.cfm?doid=1554339.1554349

Software,” 1 2005. [Online]. Available: https://kilthub.cmu.edu/articles/
Dynamic Taint Analysis for Automatic Detection Analysis and Signature
Generation of Exploits on Commodity Software/6468716.

[61] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu, and
P. Saxena, “Auto-patching DOM-based XSS at scale,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE
2015. Bergamo, Italy: ACM Press, 2015, pp. 272–283. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2786805.2786821. [Accessed 2020-05-05].

[62] ——, “DexterJS: robust testing platform for DOM-based XSS vulnerabilities,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2015. Bergamo, Italy: ACM Press, 2015, pp.
946–949. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2786805.
2803191. [Accessed 2020-05-06].

[63] A. Rauschmayer, “Deploying ECMAScript 6,” Apr. 2015. [Online]. Available:
https://2ality.com/2015/04/deploying-es6.html. [Accessed 2020-05-07].

[64] V. Raychev, M. Vechev, and A. Krause, “Predicting Program Properties
from ”Big Code”,” in Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages - POPL
’15. Mumbai, India: ACM Press, 2015, pp. 111–124. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2676726.2677009. [Accessed 2020-05-08].

[65] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The Eval That
Men Do,” in ECOOP 2011 – Object-Oriented Programming, M. Mezini,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, vol. 6813, pp.
52–78, series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-22655-7 4. [Accessed 2020-05-02].

[66] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A
Symbolic Execution Framework for JavaScript,” in 2010 IEEE Symposium
on Security and Privacy. Oakland, CA, USA: IEEE, 2010, pp. 513–528.
[Online]. Available: http://ieeexplore.ieee.org/document/5504700/. [Accessed
2020-05-08].

[67] P. Saxena, S. Hanna, P. Poosankam, and D. Song, “Flax: Systematic discovery
of client-side validation vulnerabilities in rich web applications,” 2010.

[68] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You Ever Wanted to
Know about Dynamic Taint Analysis and Forward Symbolic Execution (but
Might Have Been Afraid to Ask),” in 2010 IEEE Symposium on Security and

86

https://kilthub.cmu.edu/articles/Dynamic_Taint_Analysis_for_Automatic_Detection_Analysis_and_Signature_Generation_of_Exploits_on_Commodity_Software/6468716
https://kilthub.cmu.edu/articles/Dynamic_Taint_Analysis_for_Automatic_Detection_Analysis_and_Signature_Generation_of_Exploits_on_Commodity_Software/6468716
https://kilthub.cmu.edu/articles/Dynamic_Taint_Analysis_for_Automatic_Detection_Analysis_and_Signature_Generation_of_Exploits_on_Commodity_Software/6468716
http://dl.acm.org/citation.cfm?doid=2786805.2786821
http://dl.acm.org/citation.cfm?doid=2786805.2803191
http://dl.acm.org/citation.cfm?doid=2786805.2803191
https://2ality.com/2015/04/deploying-es6.html
http://dl.acm.org/citation.cfm?doid=2676726.2677009
http://link.springer.com/10.1007/978-3-642-22655-7_4
http://ieeexplore.ieee.org/document/5504700/

Privacy. Oakland, CA, USA: IEEE, 2010, pp. 317–331. [Online]. Available:
http://ieeexplore.ieee.org/document/5504796/. [Accessed 2020-05-02].

[69] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective record-
replay and dynamic analysis framework for JavaScript,” in In ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (SIG-
SOFT FSE, 2013.

[70] Snyk, “Vulnerability DB | Snyk.” [Online]. Available: https://snyk.io/vuln?
type=npm.” [Accessed 2020-05-04].

[71] C.-A. Staicu, M. Pradel, and B. Livshits, “SYNODE: Understanding and
Automatically Preventing Injection Attacks on NODE.JS,” in Proceedings
2018 Network and Distributed System Security Symposium. San Diego, CA:
Internet Society, 2018. [Online]. Available: https://www.ndss-symposium.
org/wp-content/uploads/2018/02/ndss2018 07A-2 Staicu paper.pdf. [Accessed
2020-05-02].

[72] C.-A. Staicu, M. T. Torp, M. Schäfer, A. Møller, and M. Pradel, “Extracting
taint specifications for JavaScript libraries,” in Proc. 42nd International Con-
ference on Software Engineering (ICSE), May 2020.

[73] H. Sun, D. Bonetta, C. Humer, and W. Binder, “Efficient dynamic analysis
for Node.js,” in Proceedings of the 27th International Conference on Compiler
Construction - CC 2018. Vienna, Austria: ACM Press, 2018, pp. 196–206.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=3178372.3179527.
[Accessed 2020-05-06].

[74] sweetim, “sweetim/haversine-position,” May 2020, original-date: 2017-
03-30T14:51:53Z. [Online]. Available: https://github.com/sweetim/
haversine-position. [Accessed 2020-05-07].

[75] L. G. L. Thiel, “linus/refix,” Aug. 2019, original-date: 2012-11-26T14:23:49Z.
[Online]. Available: https://github.com/linus/refix. [Accessed 2020-05-07].

[76] J. Tortosa, “mongui,” library Catalog: www.npmjs.com. [Online]. Available:
https://www.npmjs.com/package/mongui. [Accessed 2020-05-02].

[77] M. Tran, X. Dong, Z. Liang, and X. Jiang, “Tracking the Trackers: Fast
and Scalable Dynamic Analysis of Web Content for Privacy Violations,”
in Applied Cryptography and Network Security, D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,

87

http://ieeexplore.ieee.org/document/5504796/
https://snyk.io/vuln?type=npm
https://snyk.io/vuln?type=npm
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07A-2_Staicu_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07A-2_Staicu_paper.pdf
http://dl.acm.org/citation.cfm?doid=3178372.3179527
https://github.com/sweetim/haversine-position
https://github.com/sweetim/haversine-position
https://github.com/linus/refix
https://www.npmjs.com/package/mongui

D. Tygar, M. Y. Vardi, G. Weikum, F. Bao, P. Samarati, and J. Zhou,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, vol. 7341, pp.
418–435, series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-31284-7 25. [Accessed 2020-05-05].

[78] C. Williams, “How one developer just broke Node, Babel and thousands
of projects in 11 lines of JavaScript,” Mar. 2916, library Catalog:
www.theregister.co.uk. [Online]. Available: https://www.theregister.co.uk/
2016/03/23/npm left pad chaos/. [Accessed 2020-05-06].

[79] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of
the JavaScript package ecosystem,” in Proceedings of the 13th International
Workshop on Mining Software Repositories - MSR ’16. Austin, Texas: ACM
Press, 2016, pp. 351–361. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2901739.2901743. [Accessed 2020-05-06].

[80] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko, “One VM to rule them all,” in
Proceedings of the 2013 ACM international symposium on New ideas, new
paradigms, and reflections on programming & software, ser. Onward! 2013.
Indianapolis, Indiana, USA: Association for Computing Machinery, Oct. 2013,
pp. 187–204. [Online]. Available: https://doi.org/10.1145/2509578.2509581.
[Accessed 2020-05-05].

[81] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement: A practi-
cal approach to defeat a wide range of attacks,” in USENIX Security Symposium,
2006.

[82] N. C. Zakas, “eval() isn’t evil, just misunderstood,” library Catalog:
humanwhocodes.com. [Online]. Available: https://humanwhocodes.com/blog/
2013/06/25/eval-isnt-evil-just-misunderstood/. [Accessed 2020-05-02].

[83] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small World
with High Risks: A Study of Security Threats in the npm Ecosystem,”
2019, pp. 995–1010. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/zimmerman. [Accessed 2020-05-02].

88

http://link.springer.com/10.1007/978-3-642-31284-7_25
https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
http://dl.acm.org/citation.cfm?doid=2901739.2901743
http://dl.acm.org/citation.cfm?doid=2901739.2901743
https://doi.org/10.1145/2509578.2509581
https://humanwhocodes.com/blog/2013/06/25/eval-isnt-evil-just-misunderstood/
https://humanwhocodes.com/blog/2013/06/25/eval-isnt-evil-just-misunderstood/
https://www.usenix.org/conference/usenixsecurity19/presentation/zimmerman
https://www.usenix.org/conference/usenixsecurity19/presentation/zimmerman

Appendix A

Sample Test Program

The following test case is a sample test program that tests for special cases in binary

operations equality, including type coercion and the lack of transitivity in the ==

operator, based on the notes in the ECMA-262 specifications [43].

1 import { j a l a n g i a s s e r t t a i n t t r u e , j a l a n g i a s s e r t t a i n t f a l s e ,
2 j a l a n g i s e t t a i n t , j a l a n g i s e t p r o p t a i n t ,

j a l a n g i a s s e r t p r o p t a i n t f a l s e ,
3 j a l a n g i a s s e r t p r o p t a i n t t r u e } from "../../taint_header" ;
4 import { t e s t s u i t e , t e s t o n e } from "../../test_header" ;
5 l e t a s s e r t = r e q u i r e ('assert')
6
7 t e s t s u i t e ("- Equality Operations Correctness -" , function () {
8 l e t a = {} ;
9 l e t b = {} ;

10 t e s t o n e ("NOTE 1a: coerce string comparison" , function () {
11 a s s e r t (""+a == ""+b)
12 }) ;
13
14 t e s t o n e ("NOTE 1b: coerce string comparison" , function () {
15 a s s e r t (a != b)
16 }) ;
17
18 t e s t o n e ("NOTE 1c: coerce string comparison" , function () {
19 a s s e r t (a !== b)
20 }) ;
21
22 a = "1"

23 b = "01"

24

89

25 t e s t o n e ("NOTE 1d: coerce Numeric comparison" , function () {
26 a s s e r t (+a == +b)
27 }) ;
28
29 t e s t o n e ("NOTE 1e: coerce Numeric comparison" , function () {
30 a s s e r t (a != b)
31 }) ;
32
33 t e s t o n e ("NOTE 1f: coerce Numeric comparison" , function () {
34 a s s e r t (a !== b)
35 }) ;
36
37 a = "true"

38 b = 1
39
40 t e s t o n e ("NOTE 1d: coerce boolean comparison" , function () {
41 a s s e r t (! a == ! b)
42 }) ;
43
44 t e s t o n e ("NOTE 1e: coerce boolean comparison" , function () {
45 a s s e r t (a != b)
46 }) ;
47
48 t e s t o n e ("NOTE 1f: coerce boolean comparison" , function () {
49 a s s e r t (a !== b)
50 }) ;
51
52 a = "hello" ;
53 b = "hello" ;
54 l e t c = "bye" ;
55 l e t d = "bye2" ;
56
57 t e s t o n e ("NOTE 2a: De Morgan's and Symmetric" , function () {
58 a s s e r t ((a != b) === ! (a == b)) ;
59 }) ;
60
61 t e s t o n e ("NOTE 2b: De Morgan's and Symmetric" , function () {
62 a s s e r t ((c != d) === ! (c == d)) ;
63 }) ;
64
65
66 t e s t o n e ("NOTE 2c: De Morgan's and Symmetric" , function () {
67 a s s e r t ((a == b) === (b == a)) ;
68 }) ;
69
70
71 t e s t o n e ("NOTE 2d: De Morgan's and Symmetric" , function () {
72 a s s e r t ((c == d) === (d == c)) ;
73 }) ;
74
75

90

76 t e s t o n e ("NOTE 3a: Transitivity (and the lack of)" , function () {
77 a s s e r t (new St r ing ("a") == "a") ;
78 }) ;
79
80 t e s t o n e ("NOTE 3b: Transitivity (and the lack of)" , function () {
81 a s s e r t ("a" == new St r ing ("a")) ;
82 }) ;
83
84 t e s t o n e ("NOTE 3c: Transitivity (and the lack of)" , function () {
85 a s s e r t ((new St r ing ("a") == new St r ing ("a")) === fa l se) ;
86 }) ;
87 }) ;

91

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 NODE.JS and the NPM Ecosystem
	1.1.1 Security Concerns in NPM

	1.2 Existing Approaches to Finding Code Injection Vulnerabilities
	1.2.1 Static Analysis
	1.2.2 Dynamic Analysis
	1.2.3 Dynamic Taint Analysis
	1.2.4 Challenges for JavaScript

	1.3 Outline

	2 Overview and Background
	2.1 Overview
	2.1.1 Primitives
	2.1.2 Objects
	2.1.3 Dynamic Code Generation

	2.2 Instrumentation and Reflection
	2.2.1 Reflection in JavaScript via Proxy
	2.2.2 Instrumentation of JavaScript Operations

	2.3 NODE.JS Features and Vulnerabilities
	2.3.1 Code Injection Vulnerabilities

	2.4 Dynamic Taint Analysis
	2.4.1 Definitions
	2.4.2 Taint Propagation
	2.4.3 Explicit and Implicit Flow

	3 Related Work
	3.1 Dynamic Taint Analysis in JavaScript
	3.1.1 Taint Analysis on the JavaScript Engine
	3.1.2 Engine Independent Dynamic Taint Analysis for JavaScript
	3.1.3 Handling of Dynamically Generated Code

	3.2 Analysis of NPM Packages
	3.2.1 Ecosystem Analysis of NPM Packages
	3.2.2 Security Analysis of NPM Packages

	4 NodeTaintProxy
	4.1 Architecture
	4.1.1 Overview
	4.1.2 Uniquely Identifying Primitives via Wrapping
	4.1.3 Initializing the Analysis
	4.1.4 Operation Semantics of Our Tool
	4.1.5 Taint Tracking and Propagation
	4.1.6 Architecture by Layers

	4.2 User Interface - Interaction via Ghost Functions
	4.2.1 Setting up Sinks
	4.2.2 Setting up Sources
	4.2.3 Running the Analysis

	4.3 Handling Tainted Dynamic Code Generation
	4.3.1 Challenges
	4.3.2 Overview of Approach
	4.3.3 Limitations of Approach

	4.4 Discussion
	4.4.1 JavaScript Semantics
	4.4.2 Native Functions
	4.4.3 Precise String Tainting

	5 Results and Discussion
	5.1 Dataset
	5.2 Results on Case Studies
	5.3 Discussion
	5.3.1 Successful Detection
	5.3.2 Unsupported Operations
	5.3.3 Overwrapping

	5.4 Feasibility Study
	5.4.1 Challenges for Large Scale Analysis of Packages
	5.4.2 Methodology of Feasibility Study
	5.4.3 Analysis of Feasibility Study Vulnerabilities
	5.4.4 Insights from Feasibility Study

	5.5 Threats to Validity

	6 Limitations and Future Work
	6.1 Overwrapping of Primitives
	6.2 Better Language Support
	6.3 Large Scale Analysis

	7 Conclusion
	Bibliography
	Appendix A Sample Test Program

