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Abstract. Many real-world problems involve building a predictive model
about an adversary and then determining a decision accordingly, includ-
ing two-stage (predict then optimize) and decision focused (joint predict
and optimize) approaches. The involvement of a predictive model learned
from adversary’s behavior data poses a critical threat that an adversary
can influence the learning process, which will ultimately deteriorate the
end-goal decision quality. In this paper, we study the problem of poi-
soning attacks in this data-based decision making setting. That is, the
adversary can alter the training data by injecting some perturbation into
the data to a certain limit that can substantially change the final deci-
sion outcome in the end towards the adversary goal. To our knowledge,
this is the first work that studies poisoning attacks in such data-based
decision making scenarios. In particular, we provide the following main
contributions. We introduce a new meta-gradient based poisoning at-
tack for various types of predict and optimize frameworks. We compare
to a technique shown effective in computer vision. We find that the com-
plexity of the problem makes attacking decision focused model difficult.
We show that an attack crafted against a two-stage model is effectively
transferable to a decision-focused model.

1 Introduction

As machine learning has been gaining a lot of adventions and interests from both
research and industrial communities, the opportunities for and the potential cost
of failure grow. Some sources of failure are well explored, such as poorly chosen
models and biased datasets. More recently, research has also considered another
avenue for failure: intelligent adversaries that wish to manipulate the results of
machine learning models [18, 10]. For example, adversaries can perform evasion
attacks [5, 16, 23] to alter the classification of particular samples at test time;
this requires access to some data that will be taken as input by a pre-trained
model. Alternatively, with access to the training data, attackers can perform
poisoning attacks [13, 6, 27]. The goal of poisoning attack is to manipulate the
training data such that the resulting model offers advantage to the adversary.
Adversarial machine learning is the field that includes study of both evasion and
poisoning attacks, as well as design of models resistant to these attacks.
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Another emerging area of study is that of data-based decision making. Many
machine learning applications involve a data to decision pipeline: first using
known data construct a predictive model, then apply the predictive model to
unknown data, and lastly make decisions based on those predictions. Traditional
approaches here have been two-stage, with the predictive model being optimized
solely for its prediction accuracy [29, 8, 20, 34, 30]. If the prediction model is per-
fect over the whole prediction space, the two-stage approach would be optimal.
However, complicated prediction boundaries in high dimension spaces can never
be modeled perfectly even with large but finite data; in fact, for data driven dec-
sion making the end goal is to make the best decisions possible, but the prediction
model itself is not being optimized with that goal in mind. As a consequence of
this observation, a method often referred to as decision focused learning seeks
to directly integrate the decision optimizer into the prediction model during
training. Hence, decision focused learning uses the decision quality to train the
network. Updating the model via gradient descent, then, can be accomplished by
differentiating through the solution to the decision optimization. This approach
has proven more effective than corresponding two-stage models in some applica-
tions. However, this approach is significantly more computationally expensive,
as each forward pass in the training process requires solving the optimization.

Our work lies at the intersection of data-based decision making and adver-
sarial learning. We investigate the vulnerabilities of data-based decision making
methods by developing poisoning attacks against these methods. To our knowl-
edge, our work is the first one exploring this topic. Specifically, we look into
using end-to-end attacks against both the aforementioned data-based decision
methods designed for convex optimization, as well as a third model which we
call the simple joint model. Here, the optimizer is itself approximated by a neu-
ral network. Furthermore, as it is important to understand the transferability of
poisoning attacks between different models, we also investigate how effectively
our generated attacks can be transferred beyond the originally targeted method
(e.g. computing an attack against a two stage model and then also testing the
generated poison on a decision focused model).

Our first contribution is to create a meta-gradient based poisoning attack.
Put simply, we unroll the target model’s training procedure (which consists
entirely of differentiable steps) to differentiate through the training and calculate
gradients of the attacker’s loss function with respect to the training data itself.
Then, we use these gradients to perform projected (into the feasible space defined
by constraints on the attack) gradient descent.

Our second contribution is to demonstrate that existing state of the art meth-
ods in other domains (specifically Metapoison [12] in computer vision) may not
be directly applicable to the field of data-based decision making. We accomplish
this by attacking a simple data-based decision making learner (using Metapoison
to solve the attack) as well as testing the found attack on both two-stage and
decision focused learners. The ineffectiveness of this approach for our problem
suggests that new techniques may have to be developed for poisoning attacks on
data-based decision making models.
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Our experiments yield several findings that should be of use to future re-
search. Most notably, attacking a decision-focused learner directly is a particu-
larly difficult ask due to the complexity of the learner’s training process. Beyond
the (significant) computational requirements of solving the attack, any stabil-
ity or precision issues within the learner’s gradient calculation are compounded
when computing the meta-gradient. Common machine learning pitfalls such as
exploding or vanishing gradients appear frequently and are harder to counter-
act. Furthermore, the complexity of the solution space (which scales with model
size, optimization objective, and constraints) means that many optima of various
quality exist, and finding a good one with gradient descent is not guaranteed.
These effects are less noticeable when attacking the two-stage model or the simple
joint model, as their training gradient updates do not involve backpropagating
through an optimization problem.

Furthermore, we investigate the transferability of our method’s attacks. Pre-
vious work has shown the transferability of meta-gradient based poisoning at-
tacks [21]. Our experiments show that this property still applies, to varying de-
grees, across data-based decision making methods. This finding aligns with the
general transferability phenomenon found in adversarial machine learning [22].
Primarily, we observe that poisons created against a two-stage learner effectively
transfer to a decision-focused learner.

2 Related Work

Decision Focused Learning. Decision-focused learning is an approach that has
been applied to discrete [31] and convex [32] optimization, as well as non-convex
optimization in security games [24]. The key idea here is that, instead of a
traditional two-stage "predict then optimize" approach to solving problems, the
decision maker instead uses the decision quality itself as the training loss. This
is done by backpropagating through the optimization problem, which can be
accomplished by applying the implicit function theorem to the KKT conditions of
that optimization [31]. Our proposed attack could be called a decision-focused
attack; we differentiate through the entire data-based decision making problem
to optimize our poison.

Adversarial Learning. Adversarial learning is a subfield of machine learning fo-
cused on attacking models. The attack formulated in this work is analogous to a
causative attack (or poisoning attack) in adversarial learning [11, 17, 33, 35, 12].
A significant difference between our work and typical adversarial learning is that
our attacker has end goals beyond minimizing prediction accuracy. While our
attack does target the training process, the attacker’s objective is to manipulate
the decision outcome of the optimization problem.

Meta Learning. In machine learning, meta learning is an approach designed
to optimize the training process itself. Historically, meta learning was focused
on improving models, though more recently, meta learning based attacks have
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proven effective. Muñoz-González et al. used a metagradient method to optimize
a poisoning attack by back-propagating through the learning process [21]. They
demonstrated that this approach was effective against a variety of decision mak-
ers, for multiple different tasks. Interestingly, they found that these poisoning
attacks could be effectively transferred to models other than the one against
which they were optimized [21]. Zugner et al. utilized the metagradient method
to attack graph learning problems, creating an attack capable of dramatically
reducing global node classification accuracy [35]. MetaPoison uses shallow meta-
gradients averaged over multiple models at each poison optimization step to
produce a robust yet subtle attack on image classification that can be effectively
transferred beyond the original target model [12]. Similar to these papers, our
work focuses on a metagradient poisoning attack. Our contribution is in extend-
ing metagradient attacks to data based decision making models, and providing a
detailed overview of the challenges in creating poisoning attacks in this setting.

3 Data-based Decision Making

Data-based decision making refers to a common paradigm in artificial intelligence
in which we are concerned with three related pieces of information: directly
observable data (denoted by u), data that will be unobservable at test time
(denoted by θ), and a decision that must be made (denoted by x). The decision,
x, depends directly on θ, which in turn can be predicted based on u. The ultimate
goal in a data-based decision making problem is to find an optimal decision to
maximize a utility function, abstractly represented as follows:

maxx∈X f(x, θ)

where x is the decision variable and X ⊆ RK is the set of all feasible decisions.
Note that the objective, f , depends directly on the unobservable parameter θ,
which must be inferred from the correlated observable data, u. In this work, we
focus on the problem setting in which the decision space X can be represented
as a set of linear constraints X = {x ∈ RK : Ax ≤ b} where (A, b) are constant.

In literature, there are two main approaches used to tackle the data-based
decision making problem. The first approach, named two-stage approach, di-
vides the problem into two separate phases. The first phase is the learning phase
in which the unobserved parameter θ is learnt based on some training dataset
D = {(u1, θ1), (u2, θ2), · · · , (un, θn)} in which each data point i is associated
with a feature vector ui ∈ Rd and a true label θi ∈ RK (θi ∈ NK if it is cat-
egorical). Then in the second phase which is called the decision-making phase,
the decision x will be optimized based on the learning outcome θ. The second
approach, named decision-focused learning, on the other hand, considers a
single end-to-end pipeline (with an intermediate learning layer) that attempts
to directly optimize the decision based on the training data D. In addition to
these two main approaches, in this paper, we create a third simple approach,
named simple joint approach that formulates the data-based decision making
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Fig. 1: Depiction of a two-stage learner

as a simple learning problem. We consider this approach as a baseline to study
poisoning attacks in this data-based decision making setting.

In the following, we first describe in details all these three approaches. We
then present our optimization formulations to compute poisoning attacks to these
three approaches, which are challenging to solve. Our proposed methodology to
solve these optimization problems will be presented in Section 4.

3.1 Two-Stage Approach

Learner Description The traditional approach to data-based decision mak-
ing is two-stage [29, 8, 30]. The first of these stages is predicting the unknown
parameter θ from the observed feature vector u. The second stage, then, is to
compute the optimal x given the predicted θ (Figure 1). Predicting the unknown
parameter θ can be done using a parametric model, denoted by θ̂ = g(u,w).
Here, w is the model parameter that needs to be determined. Given a training
dataset D = {(u1, θ1), (u2, θ2), · · · , (un, θn)} in which each data point i is asso-
ciated with a feature vector ui ∈ Rd and a true label θi ∈ RK (θi ∈ NK if it is
categorical), the decision maker first trains a predictive model g(u,w) to predict
the label of a data point u. The learner seeks an optimal model parameter w∗

that minimizes the training loss, abstractly formulated as follows:

minw L(D, w)

For example, one can use mean squared error as the training loss:

L(D, w) =
1

n

∑
i
(θi − g(ui, w))

2

Once the model has been trained (yielding w∗), the decision maker can use
observed u values to predict θ value (i.e., g(u,w∗)), then use that prediction to
find an optimal decision by solving the following optimization problem:

maxx∈X f(x, g(u,w∗))

Poisoning Attack Formulation In designing poisoning attacks, we assume an
adversary can alter the training data by injecting a small perturbation to every
data point. More specifically, each feature vector ui can be altered by adding
a small quantity ϵi with the constraint that lbi ≤ ϵi ≤ ubi. Here, lbi < 0 and
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Fig. 2: Depiction of a decision focused learner

ubi > 0 represent the maximum perturbation the adversary can apply to the data
point i. Intuitively, (lbi, ubi) captures the adversary’s capability. The adversary
attempts to optimize some goal, for example, minimizing the decision maker’s
utility in the test set or forcing the decision maker to produce a particular target
decision output for some data points in the test set. We represent this poisoning
attack on a two-stage model with the following general formulation:

min Ladv(x∗, θtarget) (1)

s.t. x∗ ∈ argmaxx∈Xf(x, g(utarget, w∗)) (2)

w∗ ∈ argminwL(Dpoison, w) (3)

Dpoison = {(u1 + ϵ1, θ1), · · · , (un + ϵn, θn)} (4)
ϵi ∈ [lbi, ubi],∀i = 1, 2, · · · , n (5)

where (utarget, θtarget) is the adversary’s target element. Line 1 simply represents
a general objective for the adversary. For example, if the adversary’s goal is to
minimize the decision maker’s utility on this target, then Ladv(x∗, θtarget) =
f(x∗, θtarget). Line 2 is the optimization problem solved by the learner given
the network output. Equation 3 then represents the optimal network weights as
a function of the learner’s training. Next, line 4 denotes the training dataset,
altered by the attacker with poison values ϵ. Lastly, line 5 denotes the restric-
tions on the attacker’s power, specifically a magnitude constraint on each poison
element.5 Solving the above optimization problem optimally is challenging since
it has multiple connected levels of optimizations.

3.2 Decision Focused Approach

Learner Description While the two-stage approach is straightforward and
effective, its training process is disconnected from the end goal of the system.
More specifically, the model is being trained for prediction accuracy, whereas the
ultimate objective is to produce good decisions [32].

5 Note that our formulation can be generalized to multiple targeted data points in
the test set by taking the sum of losses over these data points. In addition, this can
be also extended to incorporate perturbations on labels θi by introducing additional
perturbation variables αi to add to the labels.
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A recent approach called decision focused learning seeks to bridge the dis-
connect between the training and the decisions produced, while still utilizing
an explicit optimization solver (Figure 2). In theory, this approach can improve
final decision quality by concentrating the (inevitable) prediction errors in areas
that will have the least detrimental effect. For each training data point, θ is
predicted from u and the optimization problem is solved to produce x. Then,
the network weights are updated via gradient descent to maximize the decision
quality. Intuitively, we can think of this as incorporating a convex optimization
layer as the last layer of a neural network. This method can give improved re-
sults over the two-stage approach, at the cost of training time [32]. Essentially,
in a decision-focused approach, the loss function the learner minimizes is the
negative mean decision quality:

min
w

L(D, w)

where L(D, w) = − 1

n

∑
i
f
(
θi, x

∗(θ̂i)
)

In this case, x∗ is a result of solving the following optimization problem:

x∗(θ̂i) ∈ argmaxx∈Xf(x, θ̂i)

where θ̂i = g(ui, w) is the network output.

Unlike the two-stage approach, here one must differentiate through the decision
optimization problem to optimize the model parameters w. This can be accom-
plished by using the implicit function theorem on the KKT conditions of the
optimization problem [2].

Poisoning Attack Formulation Given the decision-focused formulation, we
now can represent the problem of finding an optimal poisoning attack as the
following optimization problem:

min Ladv(x∗, θtarget) (6)

s.t. x∗ ∈ argmaxx∈Xf(x, g(utarget, w∗)) (7)

w∗ ∈ argminw

[
L(Dpoison, w) = − 1

n

∑
i
f
(
θi, x

∗(θ̂i)
)]

(8)

given x∗(θ̂i) ∈ argmaxx∈Xf(x, θ̂i) (9)

and θ̂i = g(ui + ϵi, w) is the network output. (10)

Dpoison = {(u1 + ϵ1, θ1), · · · , (un + ϵn, θn)} (11)
ϵi ∈ [lbi, ubi],∀i = 1, 2, · · · , n (12)

At a high level, the general attack formulation in this setting is similar to the
two-stage case. However, solving the above optimization problem is much more
challenging since the learner’s training Eq. (8 – 10) involves an inner optimization
layer which depends on the decision optimizer for every training data point.
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Fig. 3: Depiction of a learner using the simple joint approach

3.3 Simple Joint Approach

Learner Description A naive approach to data based decision making is to
train a parametric model using the features (u) to directly predict the optimal
decision (x) (Figure 3). Similar to the decision focused approach, we use negative
mean decision quality as the loss function:

minw L(D, w)

L(D, w) = − 1

n

∑
i
f
(
θi, x̂(ui)

)
In this case, however, x̂ itself is the network output: x̂(ui) = g(ui, w). This
bypasses the need to directly predict the labels (θ̂). Intuitively, we can think of
this as implicitly learning the predictive task “inside” of the network.

Alternatively, we could solve the optimization problem for each training set
instance prior to training (producing x∗

i where x∗
i ∈ argmaxx∈Xf(x, θi)) and

then train the network to produce decisions as close as possible to these x∗ values.
In this method, we could use MSE as the loss function: L(D, w) = 1

n

∑n
i=1(x

∗
i −

g(ui, w))
2. However, we found this approach less effective and more prone to

overfitting than directly maximizing decision quality.

One complication when training a network to solve optimization problems is
the constraints (if any exist) on the solution. Inspired by Shah et. al [28], we uti-
lize a specially designed neural network layer to enforce constraints throughout
the training process, ensuring valid decisions are made [28].

In practice, this naive approach is often ineffective as training networks to
directly solve optimization problems is difficult. However, we investigate this
simple model as a target for generating poisoning attacks that can then be
transferred to the more sophisticated models.

Poisoning Attack Formulation The attack formulation here is similar to
the previous cases. The difference is in the second line; rather than producing
predictions, this simple joint model simply treats the network output as the
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decision itself, and is trained accordingly:

min Ladv(x∗, θtarget)

s.t. x∗ = g(utarget, w∗)

w∗ ∈ argminw

[
L(Dpoison, w) = − 1

n

∑
i

f
(
θi, x̂(ui + ϵi)

)]
Dpoison = {(u1 + ϵ1, θ1), · · · , (un + ϵn, θn)}
ϵi ∈ [lbi, ubi],∀i = 1, 2, · · · , n

4 Attack Generation Methodology

To solve the aforementioned optimization problems and determine poisoning
attacks against each of these decision making approaches, we follow projected
gradient descent. The core of gradient descent is to compute the gradient of
the adversary loss Ladv with respect to the data perturbation ϵ, denoted by
dLadv

dϵ . This gradient computation is challenging given that all the optimization
problems involve multiple connected optimization levels.

Despite the differences among the aforementioned three data-based decision
approaches, we employed two main computation techniques: (i) computing gra-
dients via meta gradient [4]— the main idea of this technique is to differentiate
through the gradient descent steps in solving inner optimization levels. The main
advantage of this technique is that it can be can be applied for any non-convex
optimization problems. One disadvantage of this technique is that it is gener-
ally computationally expensive; and (ii) computing gradient via implicit function
theorem [7, 31] — the main idea of this technique is to leverage convexity prop-
erty, allowing us to differentiate through the KKT optimality condition. This
technique is significantly less computationally expensive compared to the first
technique. However, this technique is only applicable for convex optimization
problem. Therefore, depending on the convexity of the problems, we then decide
on one of these two techniques.

In the following, we first present in detail our proposed method to compute
attacks to two-stage learning. Later, we will mainly highlight the differences or
challenges regarding the decision-focused learning and the simple joint learning.

4.1 Attack to Two-Stage Approach

To solve the poisoning attack in this setting using gradient descent, the key is the
gradient calculation of dLadv

dϵ , which can be decomposed into different gradient
components via the chain rule:

dLadv

dϵ
=

dLadv

dx∗
dx∗

dg

dg

dϵ

dg

dϵ
=

dg

dw∗
dw∗

dϵ
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Computing dLadv

dx∗ is straightforward, and dg
dw∗ is a result of the standard

neural network back-propagation computation. On the other hand, computing
the gradient components, dx∗

dg , the gradient of the optimal decision with respect
to the label prediction g(utarget, w∗), and dw∗

dϵ , the gradient of the optimal model
parameter w∗ w.r.t the perturbation ϵ, is not straightforward. This is because
there is no explicit close-formed representation of x∗ and w∗ as a function of g
and ϵ respectively, despite the fact that x∗ depends on g and w∗ depends on ϵ. In
the following, we present our meta-gradient based method to approximate dw∗

dϵ
given the learning part (neural network function) is non-convex. We will then
present the implicit function theorem based method to compute dx∗

dg since the
decision optimization part is convex.

Computing decision gradient via implicit function theorem We focus
on the problem setting in which the decision optimization is convex (i.e., the
utility function f(x, θ) is convex in the decision variable x). This convexity set-
ting has been widely considered in previous studies on data-based decision mak-
ing [32, 31, 7, 1]. Based on this convexity characteristic, we leverage the implicit
function theorem [15] to differentiate through the decision-optimization layer
(i.e., computing dx

dg ). Given the predicted value θ̂ = g(utarget, w∗), the decision-
optimization component is formulated as a convex optimization problem:

max
x

f(x, θ̂) s.t. Ax ≤ b

Since this is a convex optimization problem, any solution that satisfies the fol-
lowing KKT conditions is optimal:

−∇xf(x, θ̂) + λ · ∇x(Ax− b) = 0

λ · (Ax− b) = 0

Ax ≤ b, λ ≥ 0

where λ is the dual variable. Observe that the first equation indicates that x and
λ are functions of θ̂. Based on the implicit function theorem, we can differentiate
through the first two equations to obtain the following gradient computation:[

dx
dθ̂
dλ
dθ̂

]
=

[
∇2

xf(x, θ̂) AT

diag(λ)A diag(Ax− b)

]−1
[

d∇xf(x,θ̂)

dθ̂
0

]
(13)

Computing learning gradient via meta gradient While we can leverage
the convexity of decision optimization to compute the gradient of a decision with
respect to the coefficients (as will be done when attacking the more complex mod-
els), we cannot apply the same approach for computing the learning gradient,
dw∗

dϵ . This is because model learning is generally a non-convex optimization prob-
lem (as neural network models are non-convex in general). On the other hand,
the implicit function theorem approach is most usefully applied to convex opti-
mization. In order to tackle this challenge, we adopt the meta-gradient method
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[3].6 This method works by assuming the model learning problem is solved via
gradient descent. This is a reasonable assumption since neural network training
typically relies on gradient descent method and its variants.

Based on this assumption, we can differentiate through the gradient descent
steps. More specifically, we’re concerned with the model’s learning problem, ab-
stractedly represented as follows:

min
w

L(Dpoison, w)

where Dpoison = {(u1 + ϵ1, θ1), · · · , (un + ϵn, θn)}

At each gradient step t, given the previous value of the model parameters
wt−1, the gradient descent update is as follows: wt = wt−1 − δ dL

dwt−1
, where

δ is the learning rate. Note that L is a function of the perturbation variables
ϵ = {ϵ1, · · · , ϵn}. Therefore, wt is also a function of ϵ (except for w0 which is the
initial value, a constant). As a result, we can differentiate through this gradient
step as follows:

dwt

dϵ
=

dwt−1

dϵ
− δ

dG

dϵ

where G(wt−1, ϵ) =
dL

dwt−1
. By applying the chain rule, we obtain:

dG

dϵ
=

∂G

∂ϵ
+

∂G

∂wt−1
· dwt−1

dϵ

If we run gradient descent in T steps, we can approximate the gradient of
the optimal w∗ with respect to perturbations ϵ as follows: dw∗

dϵ ≈ dwT

dϵ .

Projected gradient descent algorithm Given this gradient computation,
we illustrate our approach in Algorithm 1 where we run an iterative projected
gradient descent process to compute an optimal attack. At each iteration j, given
the current value of perturbation variables ϵ, Algorithm 1 first runs another inner
gradient descent process to optimize the parameters w of the predictive model
g(u,w) based on the poison data Dpoison (lines 5-13). At the end of this inner
process, we obtain a trained model w∗. During this process, we simultaneously
compute the learning gradient dw∗

dϵ .
Given the trained model w∗, Algorithm 1 proceeds into the decision opti-

mization to compute the optimal decision x∗ w.r.t the target utarget (line 14).
Along with that computation, the gradient dx∗

dg is computed (line 15). Finally,
we update the value of ϵ based on the previous gradient computation (lines 16-
17). This entire procedure (lines 5-17) is repeated until we reach a local optimal
value of ϵ or reach the predetermined maximum number of iterations nIter.
6 We can also apply this method to compute the decision gradient. However, meta-

gradient is much more computationally expensive compared to the implicit function
theorem method for convex problems.
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Algorithm 1: Poisoning Attack Generation for Two-Stage Learning
1 Input: training data D = {(u1, θ1), (u2, θ2), · · · , (un, θn)};
2 Input: target (utarget, θtarget);
3 Randomly initialize perturbation values ϵ = {ϵ1, · · · , ϵn}.
4 for j = 1 → nIter do

// Model learning
5 Initialize optimal learning loss optL = ∞;
6 for r = 1 → nRound do
7 Randomly initialize model parameter values w0;
8 for t = 1 → T do
9 Update wt = wt−1 − δ dL

dwt−1
;

10 Differentiate dwt
dϵ

=
dwt−1

dϵ
− δ

d

(
dL

dwt−1

)
dϵ

;

11 if L(Dpoison, wT ) < optL then
12 Update optimal learning w∗ = wT ;
13 Update learning gradient: dw∗

dϵ
= dwT

dϵ
;

// Decision optimizing
14 Compute optimal decision based on the learnt model w∗:

x∗ ∈ argmaxx∈Xf(x, g(utarget, w∗))

15 Compute decision gradient w.r.t θ̂ = g(utarget, w∗) using Eq. (13)
// Projected gradient step

16 Update perturbation variable ϵ = ϵ− δ dLadv

dϵ
where:

dLadv

dϵ
= dLadv

dx∗
dx∗

dg
dg
dw∗

dw∗

dϵ
;

17 Project ϵi to feasible perturbation space: [lbi, ubi] ∀i;
18 return ϵ;

4.2 Attack to Decision Focused Approach

Similar to the two-stage approach, in this setting, we aim to compute the gradient
dLadv

dϵ , which can be decomposed into multiple components using chain rule:

dLadv

dϵ
=

dLadv

dx∗
dx∗

dg

dg

dϵ

dg

dϵ
=

dg

dw∗
dw∗

dϵ

However, as the two methods use different training processes, the details of the
learning gradient calculation (dw

∗

dϵ ) differ significantly. In fact, it becomes much
more complicated and computationally expensive due to the involvement of the
optimizer in the training process itself.

Indeed, recall that for the calculation of the learning gradient (dw
∗

dϵ ), in gen-
eral, we follow gradient descent at every to solve the model learning problem
and then differentiate through the gradient steps as explained in the previous
section. That is, we have the following differentiation update:

dwt

dϵ
=

dwt−1

dϵ
− δ

d
(

dL
dwt−1

)
dϵ
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where L is the training loss. In two-stage approach, this training loss has a closed-
formed representation as a function of ϵ. Therefore, the above gradient compu-
tation is straightforward. On the other hand, in decision-focused approach, the
model training is represented in Eq. (8–10), in which multiple decision optimiza-
tions for every data point is involved. The gradient dL(Dpoison,w)

dw now depends

on the gradient of the optimal decision w.r.t the prediction outcomes dx∗(θ̂i)

dθ̂i
for

all i, since we have according to the chain rule:

dL
dw

=
∑
i

dL
dx∗(θ̂i)

dx∗(θ̂i)

dθ̂i

dθ̂i
dw

Computing the gradient dx∗(θ̂i)

dθ̂i
for all data points can be done via implicit

function theorem as discussed in Section 4.1, which already involves complex
computations including inverse matrix computation and the second derivative
computation, etc. As a result, it becomes very challenging to take a further

gradient step of
d( dL

dw )
dϵ . We discuss this challenge in the experiment section.

4.3 Attack to Joint Simple Approach

Finally, solving the attack on the joint sample approach is the simplest:

dLadv

dϵ
=

dLadv

dx∗
dx∗

dϵ

dx∗

dϵ
=

dx∗

dw∗
dw∗

dϵ

In this case, x∗ is simply the output of the neural network. Computing dLadv

dx∗

is straightforward, and dx∗

dw∗ is a result of the standard neural network back-
propagation computation. The only challenging component here is dw∗

dϵ as w∗ is
a function of ϵ yet cannot be expressed in closed form. As when attacking the
other models, we use the metagradient method to calculate this.

5 Experiment Setup

5.1 Attack Methods

For our experiments, we utilize three different methods to generate attacks and
compare their effectiveness. Starting with the simplest model, the first method
is based on MetaPoison [12] and is formulated against the naive end-to-end
learner. More specifically, this attack utilizes multiple target models (each at
a different stage of training) and averages their metagradients (limited to 2
training steps). Then, the attack is optimized alongside the target models. This
method was found to produce effective, unnoticeable, and transferable attacks
in the computer vision domain [12]. Our idea is to use this method against a
simple learner in the data-based decision making domain to produce attacks
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that can then be leveraged against the more sophisticated learners (two-stage
and decision-focused).

The second attack generation technique we consider involves attacking the
two-stage learner directly. Here, rather than using the MetaPoison technique, we
consider an attack trained against a single learner which is trained from scratch
at each attack epoch, giving us a more complete metagradient (computed using
Higher [9]). Unlike the previous method, this one requires differentiating through
the solution to an optimization problem as the two-stage learner explicitly solves
that optimization problem at test time. For this component, we use Qpth [2].
Once again, after an attack is generated, we further evaluate it by testing it
against the decision-focused learner.

The third and most computationally complex attack we consider is one for-
mulated directly against the decision focused learner. On the surface, this attack
is nearly identical to the one against the two-stage learner. When considered in
more depth, however, it’s a significantly more difficult problem, for reasons previ-
ously discussed. Thus, we are motivated to investigate the feasibility of attacking
this model directly.

5.2 Experiment Domains

Synthetic Data. For our synthetic data experiments, we consider the following
decision optimization problem:

min f(x, θ) =
1

2
xTQx− θTx s.t. ||x|| ≤ D,Ax ≤ b (14)

where Q is a diagonal positive-definite matrix, serving as a penalty parameter
to make the problem convex, and θ is the unknown parameter that needs to
be trained. ||x|| ≤ D is simply a magnitude constraint on the decision variable,
while Ax ≤ b represents some other constraints on the decision space. This
decision optimization formulation is typically used for representing shortest path,
maximum flow, bipartite matching, and a range of other domains [31].

In our experiments, in order to predict the unknown parameter θ, we consider
a simple neural network and randomly (according to the normal distribution)
generate synthetic data to train this predictive network. The labels are computed
as a function of the features, plus a small amount of random noise. In addition,
regarding the decision optimization, we randomly generate decision constraints.
The amount of constraints used are varied across experiments to explore how
this affects the attack generation. These constraints are added incrementally:
an experiment with 9 constraints would include the same constraints as the
corresponding experiment with 7 constraints, in addition to 2 new constraints.
Stock Market Portfolio Optimization. In addition to this simplified artifi-
cial problem, we demonstrate our attack in the portfolio optimization domain.
This is naturally modeled via data-based decision making, where, prior to the
optimization itself, future stock returns and the covariances between stocks must
be predicted. This makes the domain a natural choice for our decision-focused



An Exploration of Poisoning Attacks on Data-based Decision Making 15

attack. Similar to other recent work [30], we utilize the Markowitz model [19]
to maximize expected return while encouraging a diverse portfolio. Overall, the
objective function of the optimization problem combines maximizing immediate
return at each time step with minimizing risk, formulated as follows:

f(x, θ, p,Q) = pTx− λxTQx

Where x is the investment decision made (a vector that sums to 1, representing
percentage of investment in each stock), p is the expected immediate return, λ is a
risk aversion parameter, and Q is a matrix capturing the covariance between the
expected returns of all stocks. Intuitively, Q represents how correlated individual
stocks are, and it is more risky to invest in correlated stocks. Thus, the penalty
term incentivizes diverse investment.

The learning problem, then, is to utilize historical information about the
stocks themselves to learn both the expected returns (p) as well as a 32 dimen-
sional embedding for each stock. This embedding is then used to calculate the
covariance between each pair of stocks, using cosine similarity. Specifically, we
use the prices at the previous time step as well as rolling statistics as the input
of the neural network to (separately) learn p and Q. As in [30] these statistics
include a variety of sliding window means, as well as variances, of the histori-
cal stock prices. Loss functions for both the two-stage and the decision-focused
models utilize ground-truth p and Q values directly computed from the dataset.
Note that both p and Q depend on the price data from future timesteps: p is the
next timestep’s return, while Q is the cosine similarity of the returns over the
next 10 timesteps.

We utilize real-world historical stock data, downloaded from the Quandl
WIKI dataset, from 2004 to 2017 [25]. The stocks used belong to the SP500,
giving us 505 potential stocks to work with. Attacking the features exclusively
is not meaningful here, as the features are computed based on the raw price.
Due to this, we target our attack on the raw historical stock market data, which
affects the features, the labels (p), and the covariance matrix (Q). We restrict
our experiments to a setting with 50 stocks and 500 timesteps.

6 Results

Now we present the results of our experiments. For all the graphs, the results are
averaged over 5 random seeds which determine both the initial network weights
as well as the randomized attack starting points. In the synthetic data domain,
this also corresponds to 5 different data sets (generated using the same normal
distribution). For supplemental results, see the linked appendix7.

6.1 Synthetic Data

On the following graphs, a ‘small dataset’ refers to a setting with 250 instances
in the training dataset, while a ‘large dataset’ refers to one with 750 elements.
Simple Joint Model. In Figure 4, we display the effectiveness of attacks gener-
7 https://www.dropbox.com/s/6lznj4c1imk5qcm/DataBasedSupplemental.pdf
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(a) Attack on Large Dataset (b) Attack on Small Dataset

Fig. 4: Attacks generated against a simple joint model.

(a) Attack on Large Dataset (b) Attack on Small Dataset

Fig. 5: Attacks generated against a two-stage learner

ated against a simple joint learner. Both cases here demonstrate similar trends.
First, that the found attacks are only minimally effective against the simple
joint learner itself. Secondly, we observe that when transferring these attacks
to the decision focused and the two-stage learners the effect on their utility is
inconsistent and follows no clear trends. This finding stands in contrast to the
results obtained by MetaPoison in the field of computer vision [12]. While this
result may be surprising, the problems being solved in data-based decision mak-
ing are notably different from computer vision tasks, and the models we utilize
are significantly less complex.
Two-Stage Model. In Figure 5 we show our results when generating an attack
on the two-stage learner. Contrasted with the attacks in Figure 4, we observe
significantly higher effectiveness, both against the two-stage learner itself and
when transferring the attack to the decision-focused learner. This contrast fur-
ther suggests that methods from other domains (such as computer vision) may
not be directly applicable when attacking data based-decision making models.
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(a) Attack on Large Dataset (b) Attack on Small Dataset

Fig. 6: Effect of adding constraints on attack results

(a) Attack on Large Dataset (b) Attack on Small Dataset

Fig. 7: Attacking a decision-focused model directly

Figure 6 demonstrates the effect of introducing more constraints to the op-
timization problem. What we observe here is that while the effectiveness of our
attacks is dependent on the constraints, there is no simple trend when varying
them. This makes it hard to predict how effective a metagradient based attack
will be when attacking a new problem in data-based decision making.

Decision Focused Model. In Figure 7 we examine the effectiveness of attack-
ing a decision-focused learner directly. While our method is able to find good
attacks in some scenarios, it is unreliable. Even in this simple setting, gradient
descent often struggles to find a good optima, and this issue becomes even more
apparent with a larger attack space. Combined with the prohibitive compute
requirements of this attack, this is unlikely to be a practical approach in many
data based learning settings.
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(a) Attack on two-stage learner (b) Attack on decision focused learner

Fig. 8: Attacking a portfolio optimization model

6.2 Portfolio Optimization

Two-Stage Model. Figure 8a shows the results of attacking a two-stage model
for portfolio optimization, as well as transferring that attack to a decision focused
learner. Notably, we see that transferring the attack is often effective, though
is inconsistent. This is likely due to the increased complexity of this domain
compared to our synthetic setting, which includes both the transformation of
raw prices into features as well as the objective of the optimization problem.
Decision Focused Model. In Figure 8b, we display the results of attacking
a decision-focused model directly. In this case, this attack is on average more
effective than the attacks on the two-stage model. Most of this is likely due to the
decision focused learner performing better when unattacked, getting an objective
value of -0.005 to -0.094, compared to the two-stage learner that obtains objective
values between -0.32 and -0.65. We also observe once again that higher ‘budget’
attacks (meaning a larger attack space) often lead to worse attacks (higher utility
for the learner), further demonstrating the complexities of solving these attacks.

7 Conclusion

In this work, we formulated a generalized meta-gradient based poisoning attacks
against two-stage models, decision focused models, and a simple joint model.
We were able to provide insight into the difficulties of this attack by conduct-
ing extensive experiments in a synthetic domain as well as a real-world stock
market portfolio optimization problem. These experiments show the following
results. First, we observe that existing meta-gradient based techniques [12] may
be ineffective here, despite being quite effective in the domain of computer vi-
sion. Next, we provide analysis showing that direct attacks on a decision-focused
model are discouragingly difficult and problem dependent. Furthermore, despite
the inherent training differences between two-stage and decision-focused learn-
ers, our results show that poisons crafted on a two-stage model can be effective
against decision-focused models as well.
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(a) Portfolio Optimization (b) Bipartite Matching

Fig. 9: Attacks generated on simple joint models

8 Appendix

8.1 Experiment Domain - Bipartite Matching

Bipartite matching is a well established problem in graph learning. In form, it
is essentially identical to the synthetic data setting previously discussed:

min f(x, θ) =
1

2
xTQx− θTx s.t. ||x|| ≤ D,Ax ≤ b (15)

In this case, however, the constraints enforced are that x must be doubly stochas-
tic. Intuitively, x is a square matrix with continuous values. Each value xij rep-
resents the probability that node i on one side of the graph will be matched
with node j on the other side. For the learning component of the problem, the
goal is to predict the graph’s edges from the nodes’ features. This means that
ϵ represents per-node features, while θ is the graph’s adjacency matrix (relaxed
to be continuous).

For these experiments, we utilize the Cora dataset [26] which consists of
scientific papers. The features here are binary values indicating the presence of
keywords in the paper, while the edges in the graph are citations. In total, there
are 1433 features and 2708 nodes. Inspired by a recent paper [31], we split the
dataset into 27 bipartite subgraphs, with 50 nodes on each side in each subgraph.
This is accomplished using Metis [14] to partition the graph.

8.2 Supplementary Experiment Results

In Figure 9, we display the results of using Metapoison [12] to solve attacks
against a simple joint learner, and transferring the found attack to the two-
stage and decision focused learners. Both domains display the same trends as
observed in our synthetic domain - namely, that the attack is only nominally
effective against the simple joint model, and not at all effective when transferred
to the other two models. Once again, this suggests that techniques from domains
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such as computer vision may not be most appropriate for attacking data-based
decision making models.

Figure 10 shows the results when attacking two-stage and decision focused
models for bipartite matching. The trends are once again similar to the other
domains: attacks trained against a two-stage learner can effectively transfer to a
decision focused learner. Furthermore, as in portfolio optimization, we observe
that the decision focused learner appears more susceptible to direct attack (Fig-
ure 10b) than is the two-stage learner (Figure 10a). Once again, this is likely
due to the decision focused learner outperforming the two-stage counterpart in
the absence of attack. Unattacked, the two-stage learner achieves utility values
between 2.37 and 2.90 while the decision focused learner obtains utilities be-
tween 2.65 and 4.59. Particularly when attacking the decision focused learner
(Figure 10b) we can observe the recurring trend of increased attack budgets of-
ten leading to worse attacks and higher utility for the learner, demonstrating
the difficulties of finding good attack optima via (meta)gradient descent.

(a) Attack on two-stage learner (b) Attack on decision focused learner

Fig. 10: Attacking a bipartite matching model


